linear_interpolation.py 5.78 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2018 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.

from __future__ import absolute_import, division, print_function

Philipp Arras's avatar
Cleanup    
Philipp Arras committed
21
22
23
24
from numpy import (abs, arange, array, int64, mgrid, prod, ravel,
                   ravel_multi_index, zeros)
from scipy.sparse import coo_matrix
from scipy.sparse.linalg import aslinearoperator
25

Philipp Arras's avatar
Cleanup    
Philipp Arras committed
26
from ..compat import *
27
from ..domains.rg_space import RGSpace
Philipp Arras's avatar
Cleanup    
Philipp Arras committed
28
29
from ..domains.unstructured_domain import UnstructuredDomain
from ..field import Field
30
from ..sugar import makeDomain
31
32
33
34
35
36
from .linear_operator import LinearOperator


class LinearInterpolator(LinearOperator):
    def __init__(self, domain, positions):
        """
37
        Multilinear interpolation for points in an RGSpace
38
39
40
41
42

        :param domain:
        :param positions:
            positions at which to interpolate
            Field with UnstructuredDomain, shape (dim, ndata)
43
44
            positions that are not within the RGSpace get wrapped
            according to periodic boundary conditions
45
46
47
48
49
50
51
52
53
        """
        self._domain = makeDomain(domain)
        N_points = positions.shape[1]
        self._target = makeDomain(UnstructuredDomain(N_points))
        self._capability = self.TIMES | self.ADJOINT_TIMES
        self._build_mat(positions, N_points)

    def _build_mat(self, positions, N_points):
        ndim = positions.shape[0]
54
        mg = mgrid[(slice(0, 2),)*ndim]
55
        mg = array(list(map(ravel, mg)))
56
57
58
59
60
61
62
63
64
        dist = []
        for dom in self.domain:
            if isinstance(dom, UnstructuredDomain):
                dist.append([1]*len(dom.shape))
            elif isinstance(dom, RGSpace):
                dist.append(list(dom.distances))
            else:
                raise TypeError
        dist = array(dist).flatten().reshape((-1, 1))
65
66
67
        pos = positions/dist
        excess = pos-pos.astype(int64)
        pos = pos.astype(int64)
Philipp Arras's avatar
Philipp Arras committed
68
        max_index = array(self.domain.shape).reshape(-1, 1)
69
70
71
72
        data = zeros((len(mg[0]), N_points))
        ii = zeros((len(mg[0]), N_points), dtype=int64)
        jj = zeros((len(mg[0]), N_points), dtype=int64)
        for i in range(len(mg[0])):
73
74
            factor = prod(abs(1-mg[:, i].reshape((-1, 1))-excess), axis=0)
            data[i, :] = factor
75
            fromi = (pos+mg[:, i].reshape((-1, 1))) % max_index
76
77
            ii[i, :] = arange(N_points)
            jj[i, :] = ravel_multi_index(fromi, self.domain.shape)
78
79
80
        self._mat = coo_matrix((data.reshape(-1),
                               (ii.reshape(-1), jj.reshape(-1))),
                               (N_points, prod(self.domain.shape)))
81
        self._mat = aslinearoperator(self._mat)
82

83
84
85
86
87
88
89
90
91
    def apply(self, x, mode):
        self._check_input(x, mode)
        x_val = x.to_global_data()
        if mode == self.TIMES:
            res = self._mat.matvec(x_val.reshape((-1,)))
            return Field.from_global_data(self.target, res)
        res = self._mat.rmatvec(x_val).reshape(self.domain.shape)
        return Field.from_global_data(self.domain, res)

92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

# import numpy as np
# from ..domains.rg_space import RGSpace
# import itertools
#
#
# class LinearInterpolator(LinearOperator):
#     def __init__(self, domain, positions):
#         """
#         :param domain:
#             RGSpace
#         :param target:
#             UnstructuredDomain, shape (ndata,)
#         :param positions:
#             positions at which to interpolate
#             Field with UnstructuredDomain, shape (dim, ndata)
#         """
#         if not isinstance(domain, RGSpace):
#             raise TypeError("RGSpace needed")
#         if np.any(domain.shape < 2):
#             raise ValueError("RGSpace shape too small")
#         if positions.ndim != 2:
#             raise ValueError("positions must be a 2D array")
#         ndim = len(domain.shape)
#         if positions.shape[0] != ndim:
#             raise ValueError("shape mismatch")
#         self._domain = makeDomain(domain)
#         N_points = positions.shape[1]
#         dist = np.array(domain.distances).reshape((ndim, -1))
#         self._pos = positions/dist
#         shp = np.array(domain.shape, dtype=int).reshape((ndim, -1))
#         self._idx = np.maximum(0, np.minimum(shp-2, self._pos.astype(int)))
#         self._pos -= self._idx
#         tmp = tuple([0, 1] for i in range(ndim))
#         self._corners = np.array(list(itertools.product(*tmp)))
#         self._target = makeDomain(UnstructuredDomain(N_points))
#         self._capability = self.TIMES | self.ADJOINT_TIMES
#
#     def apply(self, x, mode):
#         self._check_input(x, mode)
#         x = x.to_global_data()
#         ndim = len(self._domain.shape)
#
#         res = np.zeros(self._tgt(mode).shape, dtype=x.dtype)
#         for corner in self._corners:
#             corner = corner.reshape(ndim, -1)
#             idx = self._idx+corner
#             idx2 = tuple(idx[t, :] for t in range(idx.shape[0]))
#             wgt = np.prod(self._pos*corner+(1-self._pos)*(1-corner), axis=0)
#             if mode == self.TIMES:
#                 res += wgt*x[idx2]
#             else:
#                 np.add.at(res, idx2, wgt*x)
#         return Field.from_global_data(self._tgt(mode), res)