sugar.py 4.75 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
14
15
16
17
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
18

19
20
from nifty import Space,\
                  PowerSpace,\
21
                  Field,\
22
                  ComposedOperator,\
23
                  DiagonalOperator,\
24
                  FFTOperator,\
25
26
27
                  sqrt,\
                  nifty_configuration

28
29
30
__all__ = ['create_power_operator',
           'generate_posterior_sample',
           'create_composed_fft_operator']
31
32


Jakob Knollmueller's avatar
Jakob Knollmueller committed
33
def create_power_operator(domain, power_spectrum, dtype=None,
34
                          distribution_strategy=None):
Theo Steininger's avatar
Theo Steininger committed
35
    """ Creates a diagonal operator with the given power spectrum.
36

37
    Constructs a diagonal operator that lives over the specified domain.
38

39
40
41
    Parameters
    ----------
    domain : DomainObject
42
        Domain over which the power operator shall live.
Theo Steininger's avatar
Theo Steininger committed
43
    power_spectrum : (array-like, method)
44
45
        An array-like object, or a method that implements the square root
        of a power spectrum as a function of k.
Theo Steininger's avatar
Theo Steininger committed
46
    dtype : type *optional*
47
        dtype that the field holding the power spectrum shall use
Theo Steininger's avatar
Theo Steininger committed
48
49
50
        (default : None).
        if dtype == None: the dtype of `power_spectrum` will be used.
    distribution_strategy : string *optional*
51
        Distributed strategy to be used by the underlying d2o objects.
Theo Steininger's avatar
Theo Steininger committed
52
53
        (default : 'not')

54
55
    Returns
    -------
Theo Steininger's avatar
Theo Steininger committed
56
    DiagonalOperator : An operator that implements the given power spectrum.
57

58
    """
59

60
61
62
63
    if distribution_strategy is None:
        distribution_strategy = \
            nifty_configuration['default_distribution_strategy']

Jakob Knollmueller's avatar
Jakob Knollmueller committed
64
65
    if isinstance(power_spectrum, Field):
        power_domain = power_spectrum.domain
66
    else:
Jakob Knollmueller's avatar
Jakob Knollmueller committed
67
        power_domain = PowerSpace(domain,
68
                                  distribution_strategy=distribution_strategy)
Jakob Knollmueller's avatar
Jakob Knollmueller committed
69

70
    fp = Field(power_domain, val=power_spectrum, dtype=dtype,
71
72
73
               distribution_strategy='not')
    f = fp.power_synthesize(mean=1, std=0, real_signal=False,
                            distribution_strategy=distribution_strategy)
Jakob Knollmueller's avatar
Jakob Knollmueller committed
74
    f **= 2
75
    return DiagonalOperator(domain, diagonal=f, bare=True)
76

77

78
79
80
def generate_posterior_sample(mean, covariance):
    """ Generates a posterior sample from a Gaussian distribution with given
    mean and covariance
81

82
83
84
    This method generates samples by setting up the observation and
    reconstruction of a mock signal in order to obtain residuals of the right
    correlation which are added to the given mean.
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

    Parameters
    ----------
    mean : Field
        the mean of the posterior Gaussian distribution
    covariance : WienerFilterCurvature
        The posterior correlation structure consisting of a
        response operator, noise covariance and prior signal covariance

    Returns
    -------
    sample : Field
        Returns the a sample from the Gaussian of given mean and covariance.

    """

101
102
103
    S = covariance.S
    R = covariance.R
    N = covariance.N
104

Jakob Knollmueller's avatar
Jakob Knollmueller committed
105
    power = S.diagonal().power_analyze()**.5
106
107
    mock_signal = power.power_synthesize(real_signal=True)

Jakob Knollmueller's avatar
Jakob Knollmueller committed
108
    noise = N.diagonal(bare=True).val
109

110
    mock_noise = Field.from_random(random_type="normal", domain=N.domain,
111
                                   std=sqrt(noise), dtype=noise.dtype)
Jakob Knollmueller's avatar
Jakob Knollmueller committed
112
    mock_data = R(mock_signal) + mock_noise
113

Jakob Knollmueller's avatar
Jakob Knollmueller committed
114
    mock_j = R.adjoint_times(N.inverse_times(mock_data))
115
116
117
    mock_m = covariance.inverse_times(mock_j)
    sample = mock_signal - mock_m + mean
    return sample
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137


def create_composed_fft_operator(domain, codomain=None, all_to='other'):
    fft_op_list = []
    space_index_list = []

    if codomain is None:
        codomain = [None]*len(domain)
    for i in range(len(domain)):
        space = domain[i]
        cospace = codomain[i]
        if not isinstance(space, Space):
            continue
        if (all_to == 'other' or
                (all_to == 'position' and space.harmonic) or
                (all_to == 'harmonic' and not space.harmonic)):
            fft_op_list += [FFTOperator(domain=space, target=cospace)]
            space_index_list += [i]
    result = ComposedOperator(fft_op_list, default_spaces=space_index_list)
    return result