field.py 48.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
14
15
16
17
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
18

csongor's avatar
csongor committed
19
from __future__ import division
20

21
import ast
22
import itertools
csongor's avatar
csongor committed
23
24
import numpy as np

Theo Steininger's avatar
Theo Steininger committed
25
26
from keepers import Versionable,\
                    Loggable
Jait Dixit's avatar
Jait Dixit committed
27

28
from d2o import distributed_data_object,\
29
    STRATEGIES as DISTRIBUTION_STRATEGIES
csongor's avatar
csongor committed
30

31
from nifty.config import nifty_configuration as gc
csongor's avatar
csongor committed
32

33
from nifty.domain_object import DomainObject
34

35
from nifty.spaces.power_space import PowerSpace
csongor's avatar
csongor committed
36

csongor's avatar
csongor committed
37
import nifty.nifty_utilities as utilities
38
39
from nifty.random import Random

csongor's avatar
csongor committed
40

Jait Dixit's avatar
Jait Dixit committed
41
class Field(Loggable, Versionable, object):
Theo Steininger's avatar
Theo Steininger committed
42
43
44
    """ The discrete representation of a continuous field over multiple spaces.

    In NIFTY, Fields are used to store data arrays and carry all the needed
45
    metainformation (i.e. the domain) for operators to be able to work on them.
Theo Steininger's avatar
Theo Steininger committed
46
47
    In addition Field has methods to work with power-spectra.

48
49
50
51
    Parameters
    ----------
    domain : DomainObject
        One of the space types NIFTY supports. RGSpace, GLSpace, HPSpace,
Theo Steininger's avatar
Theo Steininger committed
52
        LMSpace or PowerSpace. It might also be a FieldArray, which is
53
        an unstructured domain.
Theo Steininger's avatar
Theo Steininger committed
54

55
56
57
58
    val : scalar, numpy.ndarray, distributed_data_object, Field
        The values the array should contain after init. A scalar input will
        fill the whole array with this scalar. If an array is provided the
        array's dimensions must match the domain's.
Theo Steininger's avatar
Theo Steininger committed
59

60
61
    dtype : type
        A numpy.type. Most common are int, float and complex.
Theo Steininger's avatar
Theo Steininger committed
62

63
64
65
66
67
68
    distribution_strategy: optional[{'fftw', 'equal', 'not', 'freeform'}]
        Specifies which distributor will be created and used.
        'fftw'      uses the distribution strategy of pyfftw,
        'equal'     tries to  distribute the data as uniform as possible
        'not'       does not distribute the data at all
        'freeform'  distribute the data according to the given local data/shape
Theo Steininger's avatar
Theo Steininger committed
69

70
71
72
73
74
    copy: boolean

    Attributes
    ----------
    val : distributed_data_object
Theo Steininger's avatar
Theo Steininger committed
75

76
77
78
79
80
81
82
    domain : DomainObject
        See Parameters.
    domain_axes : tuple of tuples
        Enumerates the axes of the Field
    dtype : type
        Contains the datatype stored in the Field.
    distribution_strategy : string
Theo Steininger's avatar
Theo Steininger committed
83
84
        Name of the used distribution_strategy.

85
86
87
88
89
90
91
    Raise
    -----
    TypeError
        Raised if
            *the given domain contains something that is not a DomainObject
             instance
            *val is an array that has a different dimension than the domain
Theo Steininger's avatar
Theo Steininger committed
92

93
94
95
96
97
98
99
100
101
102
103
    Examples
    --------
    >>> a = Field(RGSpace([4,5]),val=2)
    >>> a.val
    <distributed_data_object>
    array([[2, 2, 2, 2, 2],
           [2, 2, 2, 2, 2],
           [2, 2, 2, 2, 2],
           [2, 2, 2, 2, 2]])
    >>> a.dtype
    dtype('int64')
Theo Steininger's avatar
Theo Steininger committed
104

105
106
107
108
109
    See Also
    --------
    distributed_data_object

    """
110

Theo Steininger's avatar
Theo Steininger committed
111
    # ---Initialization methods---
112

113
    def __init__(self, domain=None, val=None, dtype=None,
114
                 distribution_strategy=None, copy=False):
115
        self.domain = self._parse_domain(domain=domain, val=val)
116
        self.domain_axes = self._get_axes_tuple(self.domain)
csongor's avatar
csongor committed
117

Theo Steininger's avatar
Theo Steininger committed
118
        self.dtype = self._infer_dtype(dtype=dtype,
119
                                       val=val)
120

121
122
123
        self.distribution_strategy = self._parse_distribution_strategy(
                                distribution_strategy=distribution_strategy,
                                val=val)
csongor's avatar
csongor committed
124

125
126
127
128
        if val is None:
            self._val = None
        else:
            self.set_val(new_val=val, copy=copy)
csongor's avatar
csongor committed
129

130
    def _parse_domain(self, domain, val=None):
131
        if domain is None:
132
133
134
135
            if isinstance(val, Field):
                domain = val.domain
            else:
                domain = ()
136
        elif isinstance(domain, DomainObject):
137
            domain = (domain,)
138
139
140
        elif not isinstance(domain, tuple):
            domain = tuple(domain)

csongor's avatar
csongor committed
141
        for d in domain:
142
            if not isinstance(d, DomainObject):
143
144
                raise TypeError(
                    "Given domain contains something that is not a "
145
                    "DomainObject instance.")
csongor's avatar
csongor committed
146
147
        return domain

Theo Steininger's avatar
Theo Steininger committed
148
149
150
151
152
153
154
155
156
157
    def _get_axes_tuple(self, things_with_shape, start=0):
        i = start
        axes_list = []
        for thing in things_with_shape:
            l = []
            for j in range(len(thing.shape)):
                l += [i]
                i += 1
            axes_list += [tuple(l)]
        return tuple(axes_list)
158

159
    def _infer_dtype(self, dtype, val):
csongor's avatar
csongor committed
160
        if dtype is None:
161
            try:
162
                dtype = val.dtype
163
            except AttributeError:
Theo Steininger's avatar
Theo Steininger committed
164
165
166
                try:
                    if val is None:
                        raise TypeError
167
                    dtype = np.result_type(val)
Theo Steininger's avatar
Theo Steininger committed
168
                except(TypeError):
169
                    dtype = np.dtype(gc['default_field_dtype'])
Theo Steininger's avatar
Theo Steininger committed
170
        else:
171
            dtype = np.dtype(dtype)
172

173
174
        dtype = np.result_type(dtype, np.float)

Theo Steininger's avatar
Theo Steininger committed
175
        return dtype
176

177
178
    def _parse_distribution_strategy(self, distribution_strategy, val):
        if distribution_strategy is None:
179
            if isinstance(val, distributed_data_object):
180
                distribution_strategy = val.distribution_strategy
181
            elif isinstance(val, Field):
182
                distribution_strategy = val.distribution_strategy
183
            else:
184
                self.logger.debug("distribution_strategy set to default!")
185
                distribution_strategy = gc['default_distribution_strategy']
186
        elif distribution_strategy not in DISTRIBUTION_STRATEGIES['global']:
187
188
189
            raise ValueError(
                    "distribution_strategy must be a global-type "
                    "strategy.")
190
        return distribution_strategy
191
192

    # ---Factory methods---
193

194
    @classmethod
195
    def from_random(cls, random_type, domain=None, dtype=None,
196
                    distribution_strategy=None, **kwargs):
197
198
199
200
201
        """ Draws a random field with the given parameters.

        Parameters
        ----------
        cls : class
Theo Steininger's avatar
Theo Steininger committed
202

203
204
205
        random_type : String
            'pm1', 'normal', 'uniform' are the supported arguments for this
            method.
Theo Steininger's avatar
Theo Steininger committed
206

207
208
        domain : DomainObject
            The domain of the output random field
Theo Steininger's avatar
Theo Steininger committed
209

210
211
        dtype : type
            The datatype of the output random field
Theo Steininger's avatar
Theo Steininger committed
212

213
214
        distribution_strategy : all supported distribution strategies
            The distribution strategy of the output random field
Theo Steininger's avatar
Theo Steininger committed
215

216
217
218
219
220
221
222
        Returns
        -------
        out : Field
            The output object.

        See Also
        --------
223
        power_synthesize
Theo Steininger's avatar
Theo Steininger committed
224

225
226

        """
Theo Steininger's avatar
Theo Steininger committed
227

228
        # create a initially empty field
229
        f = cls(domain=domain, dtype=dtype,
230
                distribution_strategy=distribution_strategy)
231
232
233
234
235
236
237

        # now use the processed input in terms of f in order to parse the
        # random arguments
        random_arguments = cls._parse_random_arguments(random_type=random_type,
                                                       f=f,
                                                       **kwargs)

Martin Reinecke's avatar
Martin Reinecke committed
238
        # extract the distributed_data_object from f and apply the appropriate
239
240
241
        # random number generator to it
        sample = f.get_val(copy=False)
        generator_function = getattr(Random, random_type)
242
243
244
245
246
247
248
249
250

        comm = sample.comm
        size = comm.size
        if (sample.distribution_strategy in DISTRIBUTION_STRATEGIES['not'] and
                size > 1):
            seed = np.random.randint(10000000)
            seed = comm.bcast(seed, root=0)
            np.random.seed(seed)

251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
        sample.apply_generator(
            lambda shape: generator_function(dtype=f.dtype,
                                             shape=shape,
                                             **random_arguments))
        return f

    @staticmethod
    def _parse_random_arguments(random_type, f, **kwargs):
        if random_type == "pm1":
            random_arguments = {}

        elif random_type == "normal":
            mean = kwargs.get('mean', 0)
            std = kwargs.get('std', 1)
            random_arguments = {'mean': mean,
                                'std': std}

        elif random_type == "uniform":
            low = kwargs.get('low', 0)
            high = kwargs.get('high', 1)
            random_arguments = {'low': low,
                                'high': high}

csongor's avatar
csongor committed
274
        else:
275
276
            raise KeyError(
                "unsupported random key '" + str(random_type) + "'.")
csongor's avatar
csongor committed
277

278
        return random_arguments
csongor's avatar
csongor committed
279

280
281
    # ---Powerspectral methods---

Martin Reinecke's avatar
Martin Reinecke committed
282
    def power_analyze(self, spaces=None, logarithmic=None, nbin=None,
283
                      binbounds=None, keep_phase_information=False):
Theo Steininger's avatar
Theo Steininger committed
284
        """ Computes the square root power spectrum for a subspace of `self`.
Theo Steininger's avatar
Theo Steininger committed
285

Theo Steininger's avatar
Theo Steininger committed
286
287
288
        Creates a PowerSpace for the space addressed by `spaces` with the given
        binning and computes the power spectrum as a Field over this
        PowerSpace. This can only be done if the subspace to  be analyzed is a
289
        harmonic space. The resulting field has the same units as the initial
Theo Steininger's avatar
Theo Steininger committed
290
        field, corresponding to the square root of the power spectrum.
291
292
293

        Parameters
        ----------
Theo Steininger's avatar
Theo Steininger committed
294
295
296
297
298
        spaces : int *optional*
            The subspace for which the powerspectrum shall be computed
            (default : None).
        logarithmic : boolean *optional*
            True if the output PowerSpace should use logarithmic binning.
Martin Reinecke's avatar
Martin Reinecke committed
299
            {default : None}
Theo Steininger's avatar
Theo Steininger committed
300
301
302
303
304
305
        nbin : int *optional*
            The number of bins the resulting PowerSpace shall have
            (default : None).
            if nbin==None : maximum number of bins is used
        binbounds : array-like *optional*
            Inner bounds of the bins (default : None).
Martin Reinecke's avatar
Martin Reinecke committed
306
307
            Overrides nbin and logarithmic.
            if binbounds==None : bins are inferred.
308
309
310
311
312
313
314
315
316
317
        keep_phase_information : boolean, *optional*
            If False, return a real-valued result containing the power spectrum
            of the input Field.
            If True, return a complex-valued result whose real component
            contains the power spectrum computed from the real part of the
            input Field, and whose imaginary component contains the power
            spectrum computed from the imaginary part of the input Field.
            The absolute value of this result should be identical to the output
            of power_analyze with keep_phase_information=False.
            (default : False).
Theo Steininger's avatar
Theo Steininger committed
318

319
320
321
322
        Raise
        -----
        ValueError
            Raised if
Theo Steininger's avatar
Theo Steininger committed
323
324
                *len(domain) is != 1 when spaces==None
                *len(spaces) is != 1 if not None
325
                *the analyzed space is not harmonic
Theo Steininger's avatar
Theo Steininger committed
326

327
328
        Returns
        -------
Theo Steininger's avatar
Theo Steininger committed
329
        out : Field
330
331
332
333
334
335
            The output object. It's domain is a PowerSpace and it contains
            the power spectrum of 'self's field.

        See Also
        --------
        power_synthesize, PowerSpace
Theo Steininger's avatar
Theo Steininger committed
336

337
        """
Theo Steininger's avatar
Theo Steininger committed
338

Theo Steininger's avatar
Theo Steininger committed
339
        # check if all spaces in `self.domain` are either harmonic or
340
341
342
        # power_space instances
        for sp in self.domain:
            if not sp.harmonic and not isinstance(sp, PowerSpace):
Theo Steininger's avatar
Theo Steininger committed
343
                self.logger.info(
344
                    "Field has a space in `domain` which is neither "
345
346
347
                    "harmonic nor a PowerSpace.")

        # check if the `spaces` input is valid
348
349
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
        if spaces is None:
350
            spaces = range(len(self.domain))
351
352

        if len(spaces) == 0:
353
354
            raise ValueError(
                "No space for analysis specified.")
355

356
357
358
359
360
361
362
363
364
365
366
367
368
        if keep_phase_information:
            parts_val = self._hermitian_decomposition(
                                              domain=self.domain,
                                              val=self.val,
                                              spaces=spaces,
                                              domain_axes=self.domain_axes,
                                              preserve_gaussian_variance=False)
            parts = [self.copy_empty().set_val(part_val, copy=False)
                     for part_val in parts_val]
        else:
            parts = [self]

        parts = [abs(part)**2 for part in parts]
369
370

        for space_index in spaces:
371
372
            parts = [self._single_power_analyze(
                                work_field=part,
373
374
375
                                space_index=space_index,
                                logarithmic=logarithmic,
                                nbin=nbin,
376
377
                                binbounds=binbounds)
                     for part in parts]
378

379
380
381
382
383
384
        if keep_phase_information:
            result_field = parts[0] + 1j*parts[1]
        else:
            result_field = parts[0]

        return result_field
385
386
387

    @classmethod
    def _single_power_analyze(cls, work_field, space_index, logarithmic, nbin,
388
                              binbounds):
389

390
        if not work_field.domain[space_index].harmonic:
391
392
            raise ValueError(
                "The analyzed space must be harmonic.")
393

394
395
396
397
398
399
        # Create the target PowerSpace instance:
        # If the associated signal-space field was real, we extract the
        # hermitian and anti-hermitian parts of `self` and put them
        # into the real and imaginary parts of the power spectrum.
        # If it was complex, all the power is put into a real power spectrum.

400
        distribution_strategy = \
401
402
            work_field.val.get_axes_local_distribution_strategy(
                work_field.domain_axes[space_index])
403

404
        harmonic_domain = work_field.domain[space_index]
405
        power_domain = PowerSpace(harmonic_partner=harmonic_domain,
406
                                  distribution_strategy=distribution_strategy,
Theo Steininger's avatar
Theo Steininger committed
407
408
                                  logarithmic=logarithmic, nbin=nbin,
                                  binbounds=binbounds)
409

410
411
        power_spectrum = cls._calculate_power_spectrum(
                                field_val=work_field.val,
Martin Reinecke's avatar
Martin Reinecke committed
412
                                pdomain=power_domain,
413
                                axes=work_field.domain_axes[space_index])
414
415

        # create the result field and put power_spectrum into it
416
        result_domain = list(work_field.domain)
417
        result_domain[space_index] = power_domain
418
        result_dtype = power_spectrum.dtype
419

420
        result_field = work_field.copy_empty(
421
                   domain=result_domain,
422
                   dtype=result_dtype,
423
                   distribution_strategy=power_spectrum.distribution_strategy)
424
425
426
427
        result_field.set_val(new_val=power_spectrum, copy=False)

        return result_field

428
    @classmethod
Martin Reinecke's avatar
Martin Reinecke committed
429
    def _calculate_power_spectrum(cls, field_val, pdomain, axes=None):
430

Martin Reinecke's avatar
Martin Reinecke committed
431
432
433
        pindex = pdomain.pindex
        # MR FIXME: how about iterating over slices, instead of replicating
        # pindex? Would save memory and probably isn't slower.
434
        if axes is not None:
435
436
437
438
439
440
            pindex = cls._shape_up_pindex(
                            pindex=pindex,
                            target_shape=field_val.shape,
                            target_strategy=field_val.distribution_strategy,
                            axes=axes)
        power_spectrum = pindex.bincount(weights=field_val,
441
                                         axis=axes)
Martin Reinecke's avatar
Martin Reinecke committed
442
        rho = pdomain.rho
443
444
445
446
447
448
449
450
        if axes is not None:
            new_rho_shape = [1, ] * len(power_spectrum.shape)
            new_rho_shape[axes[0]] = len(rho)
            rho = rho.reshape(new_rho_shape)
        power_spectrum /= rho

        return power_spectrum

451
452
    @staticmethod
    def _shape_up_pindex(pindex, target_shape, target_strategy, axes):
453
454
        if pindex.distribution_strategy not in \
                DISTRIBUTION_STRATEGIES['global']:
455
            raise ValueError("pindex's distribution strategy must be "
456
457
458
459
460
461
                             "global-type")

        if pindex.distribution_strategy in DISTRIBUTION_STRATEGIES['slicing']:
            if ((0 not in axes) or
                    (target_strategy is not pindex.distribution_strategy)):
                raise ValueError(
462
                    "A slicing distributor shall not be reshaped to "
463
464
465
466
467
468
469
470
471
472
473
474
475
                    "something non-sliced.")

        semiscaled_shape = [1, ] * len(target_shape)
        for i in axes:
            semiscaled_shape[i] = target_shape[i]
        local_data = pindex.get_local_data(copy=False)
        semiscaled_local_data = local_data.reshape(semiscaled_shape)
        result_obj = pindex.copy_empty(global_shape=target_shape,
                                       distribution_strategy=target_strategy)
        result_obj.set_full_data(semiscaled_local_data, copy=False)

        return result_obj

476
    def power_synthesize(self, spaces=None, real_power=True, real_signal=True,
477
                         mean=None, std=None, distribution_strategy=None):
Theo Steininger's avatar
Theo Steininger committed
478
        """ Yields a sampled field with `self`**2 as its power spectrum.
Theo Steininger's avatar
Theo Steininger committed
479

Theo Steininger's avatar
Theo Steininger committed
480
481
        This method draws a Gaussian random field in the harmonic partner
        domain of this fields domains, using this field as power spectrum.
Theo Steininger's avatar
Theo Steininger committed
482

483
484
485
        Parameters
        ----------
        spaces : {tuple, int, None} *optional*
Theo Steininger's avatar
Theo Steininger committed
486
487
488
            Specifies the subspace containing all the PowerSpaces which
            should be converted (default : None).
            if spaces==None : Tries to convert the whole domain.
489
        real_power : boolean *optional*
Theo Steininger's avatar
Theo Steininger committed
490
491
            Determines whether the power spectrum is treated as intrinsically
            real or complex (default : True).
492
        real_signal : boolean *optional*
Theo Steininger's avatar
Theo Steininger committed
493
494
495
496
497
498
            True will result in a purely real signal-space field
            (default : True).
        mean : float *optional*
            The mean of the Gaussian noise field which is used for the Field
            synthetization (default : None).
            if mean==None : mean will be set to 0
499
        std : float *optional*
Theo Steininger's avatar
Theo Steininger committed
500
501
502
            The standard deviation of the Gaussian noise field which is used
            for the Field synthetization (default : None).
            if std==None : std will be set to 1
Theo Steininger's avatar
Theo Steininger committed
503

504
505
506
507
        Returns
        -------
        out : Field
            The output object. A random field created with the power spectrum
Theo Steininger's avatar
Theo Steininger committed
508
            stored in the `spaces` in `self`.
509

Theo Steininger's avatar
Theo Steininger committed
510
511
512
513
514
515
        Notes
        -----
        For this the spaces specified by `spaces` must be a PowerSpace.
        This expects this field to be the square root of a power spectrum, i.e.
        to have the unit of the field to be sampled.

516
517
518
        See Also
        --------
        power_analyze
Theo Steininger's avatar
Theo Steininger committed
519
520
521
522
523

        Raises
        ------
        ValueError : If domain specified by `spaces` is not a PowerSpace.

524
        """
Theo Steininger's avatar
Theo Steininger committed
525

526
527
528
        # check if the `spaces` input is valid
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))

Theo Steininger's avatar
Theo Steininger committed
529
530
531
        if spaces is None:
            spaces = range(len(self.domain))

532
533
534
535
536
        for power_space_index in spaces:
            power_space = self.domain[power_space_index]
            if not isinstance(power_space, PowerSpace):
                raise ValueError("A PowerSpace is needed for field "
                                 "synthetization.")
537
538
539

        # create the result domain
        result_domain = list(self.domain)
540
541
        for power_space_index in spaces:
            power_space = self.domain[power_space_index]
542
            harmonic_domain = power_space.harmonic_partner
543
            result_domain[power_space_index] = harmonic_domain
544
545
546

        # create random samples: one or two, depending on whether the
        # power spectrum is real or complex
547
        if real_power:
548
            result_list = [None]
549
550
        else:
            result_list = [None, None]
551

552
553
554
        if distribution_strategy is None:
            distribution_strategy = gc['default_distribution_strategy']

555
556
        result_list = [self.__class__.from_random(
                             'normal',
557
558
559
                             mean=mean,
                             std=std,
                             domain=result_domain,
560
                             dtype=np.complex,
561
                             distribution_strategy=distribution_strategy)
562
563
564
565
566
567
                       for x in result_list]

        # from now on extract the values from the random fields for further
        # processing without killing the fields.
        # if the signal-space field should be real, hermitianize the field
        # components
568
569

        spec = self.val.get_full_data()
570
571
        spec = np.sqrt(spec)

572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
        for power_space_index in spaces:
            spec = self._spec_to_rescaler(spec, result_list, power_space_index)
        local_rescaler = spec

        result_val_list = [x.val for x in result_list]

        # apply the rescaler to the random fields
        result_val_list[0].apply_scalar_function(
                                            lambda x: x * local_rescaler.real,
                                            inplace=True)

        if not real_power:
            result_val_list[1].apply_scalar_function(
                                            lambda x: x * local_rescaler.imag,
                                            inplace=True)

588
        if real_signal:
589
            result_val_list = [self._hermitian_decomposition(
590
591
592
593
594
                                            result_domain,
                                            result_val,
                                            spaces,
                                            result_list[0].domain_axes,
                                            preserve_gaussian_variance=True)[0]
595
                               for result_val in result_val_list]
596
597
598
599
600
601
602

        # store the result into the fields
        [x.set_val(new_val=y, copy=False) for x, y in
            zip(result_list, result_val_list)]

        if real_power:
            result = result_list[0]
603
        else:
604
605
606
607
            result = result_list[0] + 1j*result_list[1]

        return result

608
    @staticmethod
609
610
    def _hermitian_decomposition(domain, val, spaces, domain_axes,
                                 preserve_gaussian_variance=False):
611
612
613
614
615
616
617
618
619

        flipped_val = val
        for space in spaces:
            flipped_val = domain[space].hermitianize_inverter(
                                                    x=flipped_val,
                                                    axes=domain_axes[space])
        flipped_val = flipped_val.conjugate()
        h = (val + flipped_val)/2.
        a = val - h
620
621

        # correct variance
622
        if preserve_gaussian_variance:
Martin Reinecke's avatar
Martin Reinecke committed
623
624
            assert issubclass(val.dtype.type, np.complexfloating),\
                    "complex input field is needed here"
625
626
627
            h *= np.sqrt(2)
            a *= np.sqrt(2)

628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
#            The code below should not be needed in practice, since it would
#            only ever be called when hermitianizing a purely real field.
#            However it might be of educational use and keep us from forgetting
#            how these things are done ...

#            if not issubclass(val.dtype.type, np.complexfloating):
#                # in principle one must not correct the variance for the fixed
#                # points of the hermitianization. However, for a complex field
#                # the input field loses half of its power at its fixed points
#                # in the `hermitian` part. Hence, here a factor of sqrt(2) is
#                # also necessary!
#                # => The hermitianization can be done on a space level since
#                # either nothing must be done (LMSpace) or ALL points need a
#                # factor of sqrt(2)
#                # => use the preserve_gaussian_variance flag in the
#                # hermitian_decomposition method above.
#
#                # This code is for educational purposes:
#                fixed_points = [domain[i].hermitian_fixed_points()
#                                for i in spaces]
#                fixed_points = [[fp] if fp is None else fp
#                                for fp in fixed_points]
#
#                for product_point in itertools.product(*fixed_points):
#                    slice_object = np.array((slice(None), )*len(val.shape),
#                                            dtype=np.object)
#                    for i, sp in enumerate(spaces):
#                        point_component = product_point[i]
#                        if point_component is None:
#                            point_component = slice(None)
#                        slice_object[list(domain_axes[sp])] = point_component
#
#                    slice_object = tuple(slice_object)
#                    h[slice_object] /= np.sqrt(2)
#                    a[slice_object] /= np.sqrt(2)

664
665
        return (h, a)

666
667
    def _spec_to_rescaler(self, spec, result_list, power_space_index):
        power_space = self.domain[power_space_index]
668
669
670

        # weight the random fields with the power spectrum
        # therefore get the pindex from the power space
671
        pindex = power_space.pindex
672
673
674
675
676
677
678
        # take the local data from pindex. This data must be compatible to the
        # local data of the field given the slice of the PowerSpace
        local_distribution_strategy = \
            result_list[0].val.get_axes_local_distribution_strategy(
                result_list[0].domain_axes[power_space_index])

        if pindex.distribution_strategy is not local_distribution_strategy:
679
            raise AttributeError(
Martin Reinecke's avatar
Martin Reinecke committed
680
                "The distribution_strategy of pindex does not fit the "
681
682
683
684
685
686
687
                "slice_local distribution strategy of the synthesized field.")

        # Now use numpy advanced indexing in order to put the entries of the
        # power spectrum into the appropriate places of the pindex array.
        # Do this for every 'pindex-slice' in parallel using the 'slice(None)'s
        local_pindex = pindex.get_local_data(copy=False)

688
689
690
691
692
        local_blow_up = [slice(None)]*len(spec.shape)
        # it is important to count from behind, since spec potentially grows
        # with every iteration
        index = self.domain_axes[power_space_index][0]-len(self.shape)
        local_blow_up[index] = local_pindex
693
        # here, the power_spectrum is distributed into the new shape
694
695
        local_rescaler = spec[local_blow_up]
        return local_rescaler
696

Theo Steininger's avatar
Theo Steininger committed
697
    # ---Properties---
698

Theo Steininger's avatar
Theo Steininger committed
699
    def set_val(self, new_val=None, copy=False):
Theo Steininger's avatar
Theo Steininger committed
700
        """ Sets the fields distributed_data_object.
701
702
703

        Parameters
        ----------
Theo Steininger's avatar
Theo Steininger committed
704
        new_val : scalar, array-like, Field, None *optional*
705
706
            The values to be stored in the field.
            {default : None}
Theo Steininger's avatar
Theo Steininger committed
707

708
        copy : boolean, *optional*
Theo Steininger's avatar
Theo Steininger committed
709
710
            If False, Field tries to not copy the input data but use it
            directly.
711
712
713
714
715
716
            {default : False}
        See Also
        --------
        val

        """
Theo Steininger's avatar
Theo Steininger committed
717

718
719
        new_val = self.cast(new_val)
        if copy:
Theo Steininger's avatar
Theo Steininger committed
720
721
            new_val = new_val.copy()
        self._val = new_val
722
        return self
csongor's avatar
csongor committed
723

724
    def get_val(self, copy=False):
Theo Steininger's avatar
Theo Steininger committed
725
        """ Returns the distributed_data_object associated with this Field.
726
727
728
729

        Parameters
        ----------
        copy : boolean
Theo Steininger's avatar
Theo Steininger committed
730
731
            If true, a copy of the Field's underlying distributed_data_object
            is returned.
Theo Steininger's avatar
Theo Steininger committed
732

733
734
735
736
737
738
739
740
741
        Returns
        -------
        out : distributed_data_object

        See Also
        --------
        val

        """
Theo Steininger's avatar
Theo Steininger committed
742

743
744
745
        if self._val is None:
            self.set_val(None)

746
        if copy:
Theo Steininger's avatar
Theo Steininger committed
747
            return self._val.copy()
748
        else:
Theo Steininger's avatar
Theo Steininger committed
749
            return self._val
csongor's avatar
csongor committed
750

Theo Steininger's avatar
Theo Steininger committed
751
752
    @property
    def val(self):
Theo Steininger's avatar
Theo Steininger committed
753
        """ Returns the distributed_data_object associated with this Field.
Theo Steininger's avatar
Theo Steininger committed
754

755
756
757
758
759
760
761
762
763
        Returns
        -------
        out : distributed_data_object

        See Also
        --------
        get_val

        """
Theo Steininger's avatar
Theo Steininger committed
764

765
        return self.get_val(copy=False)
csongor's avatar
csongor committed
766

Theo Steininger's avatar
Theo Steininger committed
767
768
    @val.setter
    def val(self, new_val):
769
        self.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
770

771
772
    @property
    def shape(self):
Theo Steininger's avatar
Theo Steininger committed
773
        """ Returns the total shape of the Field's data array.
Theo Steininger's avatar
Theo Steininger committed
774

775
776
777
        Returns
        -------
        out : tuple
Martin Reinecke's avatar
Martin Reinecke committed
778
            The output object. The tuple contains the dimensions of the spaces
779
780
781
782
783
784
785
            in domain.

        See Also
        --------
        dim

        """
Theo Steininger's avatar
Theo Steininger committed
786
787
788
789
790
791
792
793
        if not hasattr(self, '_shape'):
            shape_tuple = tuple(sp.shape for sp in self.domain)
            try:
                global_shape = reduce(lambda x, y: x + y, shape_tuple)
            except TypeError:
                global_shape = ()
            self._shape = global_shape
        return self._shape
csongor's avatar
csongor committed
794

795
796
    @property
    def dim(self):
Theo Steininger's avatar
Theo Steininger committed
797
        """ Returns the total number of pixel-dimensions the field has.
Theo Steininger's avatar
Theo Steininger committed
798

Theo Steininger's avatar
Theo Steininger committed
799
        Effectively, all values from shape are multiplied.
Theo Steininger's avatar
Theo Steininger committed
800

801
802
803
804
805
806
807
808
809
810
        Returns
        -------
        out : int
            The dimension of the Field.

        See Also
        --------
        shape

        """
Theo Steininger's avatar
Theo Steininger committed
811

812
        dim_tuple = tuple(sp.dim for sp in self.domain)
Theo Steininger's avatar
Theo Steininger committed
813
814
815
816
        try:
            return reduce(lambda x, y: x * y, dim_tuple)
        except TypeError:
            return 0
csongor's avatar
csongor committed
817

818
819
    @property
    def dof(self):
Theo Steininger's avatar
Theo Steininger committed
820
821
822
823
824
825
        """ Returns the total number of degrees of freedom the Field has. For
        real Fields this is equal to `self.dim`. For complex Fields it is
        2*`self.dim`.

        """

Theo Steininger's avatar
Theo Steininger committed
826
827
828
829
830
831
832
        dof = self.dim
        if issubclass(self.dtype.type, np.complexfloating):
            dof *= 2
        return dof

    @property
    def total_volume(self):
Theo Steininger's avatar
Theo Steininger committed
833
834
835
        """ Returns the total volume of all spaces in the domain.
        """

Theo Steininger's avatar
Theo Steininger committed
836
        volume_tuple = tuple(sp.total_volume for sp in self.domain)
837
        try:
Theo Steininger's avatar
Theo Steininger committed
838
            return reduce(lambda x, y: x * y, volume_tuple)
839
        except TypeError:
Theo Steininger's avatar
Theo Steininger committed
840
            return 0.
841

Theo Steininger's avatar
Theo Steininger committed
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
    @property
    def real(self):
        """ The real part of the field (data is not copied).
        """
        real_part = self.val.real
        result = self.copy_empty(dtype=real_part.dtype)
        result.set_val(new_val=real_part, copy=False)
        return result

    @property
    def imag(self):
        """ The imaginary part of the field (data is not copied).
        """
        real_part = self.val.imag
        result = self.copy_empty(dtype=real_part.dtype)
        result.set_val(new_val=real_part, copy=False)
        return result

Theo Steininger's avatar
Theo Steininger committed
860
    # ---Special unary/binary operations---
861

csongor's avatar
csongor committed
862
    def cast(self, x=None, dtype=None):
Theo Steininger's avatar
Theo Steininger committed
863
        """ Transforms x to a d2o with the correct dtype and shape.
Theo Steininger's avatar
Theo Steininger committed
864

865
866
        Parameters
        ----------
Theo Steininger's avatar
Theo Steininger committed
867
        x : scalar, d2o, Field, array_like
868
869
            The input that shall be casted on a d2o of the same shape like the
            domain.
Theo Steininger's avatar
Theo Steininger committed
870

871
        dtype : type
Theo Steininger's avatar
Theo Steininger committed
872
873
            The datatype the output shall have. This can be used to override
            the fields dtype.
Theo Steininger's avatar
Theo Steininger committed
874

875
876
877
878
879
880
881
882
883
884
        Returns
        -------
        out : distributed_data_object
            The output object.

        See Also
        --------
        _actual_cast

        """
csongor's avatar
csongor committed
885
886
        if dtype is None:
            dtype = self.dtype
887
888
        else:
            dtype = np.dtype(dtype)
889

890
891
        casted_x = x

892
        for ind, sp in enumerate(self.domain):
893
            casted_x = sp.pre_cast(casted_x,
894
895
896
                                   axes=self.domain_axes[ind])

        casted_x = self._actual_cast(casted_x, dtype=dtype)
897
898

        for ind, sp in enumerate(self.domain):
899
900
            casted_x = sp.post_cast(casted_x,
                                    axes=self.domain_axes[ind])
901

902
        return casted_x
csongor's avatar
csongor committed
903

Theo Steininger's avatar
Theo Steininger committed
904
    def _actual_cast(self, x, dtype=None):
905
        if isinstance(x, Field):
csongor's avatar
csongor committed
906
907
908
909
910
            x = x.get_val()

        if dtype is None:
            dtype = self.dtype

911
        return_x = distributed_data_object(
912
913
914
                            global_shape=self.shape,
                            dtype=dtype,
                            distribution_strategy=self.distribution_strategy)
915
916
        return_x.set_full_data(x, copy=False)
        return return_x
Theo Steininger's avatar
Theo Steininger committed
917

918
    def copy(self, domain=None, dtype=None, distribution_strategy=None):
919
        """ Returns a full copy of the Field.
Theo Steininger's avatar
Theo Steininger committed
920

921
922
923
924
925
926
927
928
929
        If no keyword arguments are given, the returned object will be an
        identical copy of the original Field. By explicit specification one is
        able to define the domain, the dtype and the distribution_strategy of
        the returned Field.

        Parameters
        ----------
        domain : DomainObject
            The new domain the Field shall have.
Theo Steininger's avatar
Theo Steininger committed
930

931
932
        dtype : type
            The new dtype the Field shall have.
Theo Steininger's avatar
Theo Steininger committed
933

934
        distribution_strategy : all supported distribution strategies
Theo Steininger's avatar
Theo Steininger committed
935
936
            The new distribution strategy the Field shall have.

937
938
939
940
941
942
943
944
945
946
        Returns
        -------
        out : Field
            The output object. An identical copy of 'self'.

        See Also
        --------
        copy_empty

        """
Theo Steininger's avatar
Theo Steininger committed
947

Theo Steininger's avatar
Theo Steininger committed
948
        copied_val = self.get_val(copy=True)
949
950
951
952
        new_field = self.copy_empty(
                                domain=domain,
                                dtype=dtype,
                                distribution_strategy=distribution_strategy)
Theo Steininger's avatar
Theo Steininger committed
953
954
        new_field.set_val(new_val=copied_val, copy=False)
        return new_field
csongor's avatar
csongor committed
955

956
    def copy_empty(self, domain=None, dtype=None, distribution_strategy=None):
957
958
959
        """ Returns an empty copy of the Field.

        If no keyword arguments are given, the returned object will be an
Theo Steininger's avatar
Theo Steininger committed
960
961
962
963
964
        identical copy of the original Field. The memory for the data array
        is only allocated but not actively set to any value
        (c.f. numpy.ndarray.copy_empty). By explicit specification one is able
        to change the domain, the dtype and the distribution_strategy of the
        returned Field.
Theo Steininger's avatar
Theo Steininger committed
965

966
967
968
969
        Parameters
        ----------
        domain : DomainObject
            The new domain the Field shall have.
Theo Steininger's avatar
Theo Steininger committed
970

971
972
        dtype : type
            The new dtype the Field shall have.
Theo Steininger's avatar
Theo Steininger committed
973

Theo Steininger's avatar
Theo Steininger committed
974
        distribution_strategy : string, all supported distribution strategies
975
            The distribution strategy the new Field should have.
Theo Steininger's avatar
Theo Steininger committed
976

977
978
979
        Returns
        -------
        out : Field
Theo Steininger's avatar
Theo Steininger committed
980
            The output object.
981
982
983
984
985
986

        See Also
        --------
        copy

        """
Theo Steininger's avatar
Theo Steininger committed
987

Theo Steininger's avatar
Theo Steininger committed
988
989
        if domain is None:
            domain = self.domain
csongor's avatar
csongor committed
990
        else:
Theo Steininger's avatar
Theo Steininger committed
991
            domain = self._parse_domain(domain)
csongor's avatar
csongor committed
992

Theo Steininger's avatar
Theo Steininger committed
993
994
995
996
        if dtype is None:
            dtype = self.dtype
        else:
            dtype = np.dtype(dtype)
csongor's avatar
csongor committed
997

998
999
        if distribution_strategy is None:
            distribution_strategy = self.distribution_strategy
csongor's avatar
csongor committed
1000

Theo Steininger's avatar
Theo Steininger committed
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
        fast_copyable = True
        try:
            for i in xrange(len(self.domain)):
                if self.domain[i] is not domain[i]:
                    fast_copyable = False
                    break
        except IndexError:
            fast_copyable = False

        if (fast_copyable and dtype == self.dtype and
1011
                distribution_strategy == self.distribution_strategy):
Theo Steininger's avatar
Theo Steininger committed
1012
1013
1014
1015
            new_field = self._fast_copy_empty()
        else:
            new_field = Field(domain=domain,
                              dtype=dtype,
1016
                              distribution_strategy=distribution_strategy)
Theo Steininger's avatar
Theo Steininger committed
1017
        return new_field
csongor's avatar
csongor committed
1018

Theo Steininger's avatar
Theo Steininger committed
1019
1020
1021
1022
1023
1024
1025
    def _fast_copy_empty(self):
        # make an empty field
        new_field = EmptyField()
        # repair its class
        new_field.__class__ = self.__class__
        # copy domain, codomain and val
        for key, value in self.__dict__.items():
1026
            if key != '_val':
Theo Steininger's avatar
Theo Steininger committed
1027
1028
1029
1030
1031
1032
                new_field.__dict__[key] = value
            else:
                new_field.__dict__[key] = self.val.copy_empty()
        return new_field

    def weight(self, power=1, inplace=False, spaces=None):
Theo Steininger's avatar
Theo Steininger committed
1033
        """ Weights the pixels of `self` with their invidual pixel-volume.
1034
1035
1036
1037

        Parameters
        ----------
        power : number
Theo Steininger's avatar
Theo Steininger committed
1038
            The pixels get weighted with the volume-factor**power.
Theo Steininger's avatar
Theo Steininger committed
1039

1040
        inplace : boolean
Theo Steininger's avatar
Theo Steininger committed
1041
1042
            If True, `self` will be weighted and returned. Otherwise, a copy
            is made.
Theo Steininger's avatar
Theo Steininger committed
1043

Theo Steininger's avatar
Theo Steininger committed
1044
1045
        spaces : tuple of ints
            Determines on which subspace the operation takes place.
Theo Steininger's avatar
Theo Steininger committed
1046

1047
1048
1049
        Returns
        -------
        out : Field
Theo Steininger's avatar
Theo Steininger committed
1050
            The weighted field.
1051
1052

        """
1053
        if inplace:
csongor's avatar
csongor committed
1054
1055
1056
1057
            new_field = self
        else:
            new_field = self.copy_empty()

1058
        new_val = self.get_val(copy=False)
csongor's avatar
csongor committed
1059

1060
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
csongor's avatar
csongor committed
1061
        if spaces is None:
Theo Steininger's avatar
Theo Steininger committed
1062
            spaces = range(len(self.domain))
csongor's avatar
csongor committed
1063

1064
        for ind, sp in enumerate(self.domain):
Theo Steininger's avatar
Theo Steininger committed
1065
1066
1067
1068
1069
            if ind in spaces:
                new_val = sp.weight(new_val,
                                    power=power,
                                    axes=self.domain_axes[ind],
                                    inplace=inplace)
1070
1071

        new_field.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
1072
1073
        return new_field