distributed_do.py 16.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2018 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.

Martin Reinecke's avatar
Martin Reinecke committed
19
from __future__ import print_function
20
21
22
23
import numpy as np
from .random import Random
from mpi4py import MPI

Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
24
25
26
_comm = MPI.COMM_WORLD
ntask = _comm.Get_size()
rank = _comm.Get_rank()
Martin Reinecke's avatar
Martin Reinecke committed
27
master = (rank == 0)
28
29


Martin Reinecke's avatar
Martin Reinecke committed
30
31
32
33
def is_numpy():
    return False


Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
34
def _shareSize(nwork, nshares, myshare):
Martin Reinecke's avatar
Martin Reinecke committed
35
    return (nwork//nshares) + int(myshare < nwork % nshares)
Martin Reinecke's avatar
Martin Reinecke committed
36

Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
37
38

def _shareRange(nwork, nshares, myshare):
Martin Reinecke's avatar
Martin Reinecke committed
39
40
    nbase = nwork//nshares
    additional = nwork % nshares
Martin Reinecke's avatar
Martin Reinecke committed
41
    lo = myshare*nbase + min(myshare, additional)
Martin Reinecke's avatar
Martin Reinecke committed
42
    hi = lo + nbase + int(myshare < additional)
Martin Reinecke's avatar
Martin Reinecke committed
43
44
    return lo, hi

45

46
def local_shape(shape, distaxis=0):
Martin Reinecke's avatar
Martin Reinecke committed
47
    if len(shape) == 0 or distaxis == -1:
48
        return shape
Martin Reinecke's avatar
Martin Reinecke committed
49
50
    shape2 = list(shape)
    shape2[distaxis] = _shareSize(shape[distaxis], ntask, rank)
51
52
    return tuple(shape2)

Martin Reinecke's avatar
Martin Reinecke committed
53

54
55
class data_object(object):
    def __init__(self, shape, data, distaxis):
Martin Reinecke's avatar
Martin Reinecke committed
56
        self._shape = tuple(shape)
Martin Reinecke's avatar
Martin Reinecke committed
57
        if len(self._shape) == 0:
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
58
            distaxis = -1
59
60
61
        self._distaxis = distaxis
        self._data = data

Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
62
    def _sanity_checks(self):
63
        # check whether the distaxis is consistent
Martin Reinecke's avatar
Martin Reinecke committed
64
        if self._distaxis < -1 or self._distaxis >= len(self._shape):
65
            raise ValueError
Martin Reinecke's avatar
Martin Reinecke committed
66
67
68
69
        itmp = np.array(self._distaxis)
        otmp = np.empty(ntask, dtype=np.int)
        _comm.Allgather(itmp, otmp)
        if np.any(otmp != self._distaxis):
70
71
            raise ValueError
        # check whether the global shape is consistent
Martin Reinecke's avatar
Martin Reinecke committed
72
73
74
        itmp = np.array(self._shape)
        otmp = np.empty((ntask, len(self._shape)), dtype=np.int)
        _comm.Allgather(itmp, otmp)
75
        for i in range(ntask):
Martin Reinecke's avatar
Martin Reinecke committed
76
            if np.any(otmp[i, :] != self._shape):
77
78
                raise ValueError
        # check shape of local data
Martin Reinecke's avatar
Martin Reinecke committed
79
80
        if self._distaxis < 0:
            if self._data.shape != self._shape:
81
82
                raise ValueError
        else:
Martin Reinecke's avatar
Martin Reinecke committed
83
84
85
86
            itmp = np.array(self._shape)
            itmp[self._distaxis] = _shareSize(self._shape[self._distaxis],
                                              ntask, rank)
            if np.any(self._data.shape != itmp):
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
                raise ValueError

    @property
    def dtype(self):
        return self._data.dtype

    @property
    def shape(self):
        return self._shape

    @property
    def size(self):
        return np.prod(self._shape)

    @property
    def real(self):
Martin Reinecke's avatar
Martin Reinecke committed
103
        return data_object(self._shape, self._data.real, self._distaxis)
104
105
106

    @property
    def imag(self):
Martin Reinecke's avatar
Martin Reinecke committed
107
        return data_object(self._shape, self._data.imag, self._distaxis)
108

Martin Reinecke's avatar
Martin Reinecke committed
109
110
111
112
113
114
    def conj(self):
        return data_object(self._shape, self._data.conj(), self._distaxis)

    def conjugate(self):
        return data_object(self._shape, self._data.conjugate(), self._distaxis)

Martin Reinecke's avatar
Martin Reinecke committed
115
    def _contraction_helper(self, op, mpiop, axis):
116
        if axis is not None:
Martin Reinecke's avatar
Martin Reinecke committed
117
            if len(axis) == len(self._data.shape):
118
119
                axis = None
        if axis is None:
Martin Reinecke's avatar
Martin Reinecke committed
120
            res = np.array(getattr(self._data, op)())
Martin Reinecke's avatar
Martin Reinecke committed
121
            if (self._distaxis == -1):
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
122
                return res[()]
Martin Reinecke's avatar
Martin Reinecke committed
123
124
            res2 = np.empty((), dtype=res.dtype)
            _comm.Allreduce(res, res2, mpiop)
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
125
            return res2[()]
126
127

        if self._distaxis in axis:
Martin Reinecke's avatar
Martin Reinecke committed
128
129
            res = getattr(self._data, op)(axis=axis)
            res2 = np.empty_like(res)
Martin Reinecke's avatar
Martin Reinecke committed
130
            _comm.Allreduce(res, res2, mpiop)
Martin Reinecke's avatar
Martin Reinecke committed
131
            return from_global_data(res2, distaxis=0)
132
        else:
Martin Reinecke's avatar
Martin Reinecke committed
133
            # perform the contraction on the local data
Martin Reinecke's avatar
Martin Reinecke committed
134
135
            res = getattr(self._data, op)(axis=axis)
            if self._distaxis == -1:
Martin Reinecke's avatar
Martin Reinecke committed
136
                return from_global_data(res, distaxis=0)
Martin Reinecke's avatar
Martin Reinecke committed
137
            shp = list(res.shape)
Martin Reinecke's avatar
Martin Reinecke committed
138
            shift = 0
Martin Reinecke's avatar
Martin Reinecke committed
139
            for ax in axis:
Martin Reinecke's avatar
Martin Reinecke committed
140
141
                if ax < self._distaxis:
                    shift += 1
Martin Reinecke's avatar
Martin Reinecke committed
142
143
            shp[self._distaxis-shift] = self.shape[self._distaxis]
            return from_local_data(shp, res, self._distaxis-shift)
144
145
146

    def sum(self, axis=None):
        return self._contraction_helper("sum", MPI.SUM, axis)
Martin Reinecke's avatar
Martin Reinecke committed
147

Martin Reinecke's avatar
fixes    
Martin Reinecke committed
148
149
    def min(self, axis=None):
        return self._contraction_helper("min", MPI.MIN, axis)
Martin Reinecke's avatar
Martin Reinecke committed
150

Martin Reinecke's avatar
fixes    
Martin Reinecke committed
151
152
    def max(self, axis=None):
        return self._contraction_helper("max", MPI.MAX, axis)
153

Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
154
155
    def mean(self):
        return self.sum()/self.size
Martin Reinecke's avatar
Martin Reinecke committed
156

Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
157
158
    def std(self):
        return np.sqrt(self.var())
Martin Reinecke's avatar
Martin Reinecke committed
159

Martin Reinecke's avatar
Martin Reinecke committed
160
    # FIXME: to be improved!
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
161
162
163
    def var(self):
        return (abs(self-self.mean())**2).mean()

164
    def _binary_helper(self, other, op):
Martin Reinecke's avatar
Martin Reinecke committed
165
        a = self
166
        if isinstance(other, data_object):
Martin Reinecke's avatar
Martin Reinecke committed
167
            b = other
168
169
170
171
            if a._shape != b._shape:
                raise ValueError("shapes are incompatible.")
            if a._distaxis != b._distaxis:
                raise ValueError("distributions are incompatible.")
Martin Reinecke's avatar
Martin Reinecke committed
172
173
            a = a._data
            b = b._data
Martin Reinecke's avatar
Martin Reinecke committed
174
175
176
177
        elif np.isscalar(other):
            a = a._data
            b = other
        elif isinstance(other, np.ndarray):
Martin Reinecke's avatar
Martin Reinecke committed
178
            a = a._data
179
            b = other
Martin Reinecke's avatar
Martin Reinecke committed
180
181
        else:
            return NotImplemented
182
183

        tval = getattr(a, op)(b)
Martin Reinecke's avatar
Martin Reinecke committed
184
185
186
187
        if tval is a:
            return self
        else:
            return data_object(self._shape, tval, self._distaxis)
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

    def __add__(self, other):
        return self._binary_helper(other, op='__add__')

    def __radd__(self, other):
        return self._binary_helper(other, op='__radd__')

    def __iadd__(self, other):
        return self._binary_helper(other, op='__iadd__')

    def __sub__(self, other):
        return self._binary_helper(other, op='__sub__')

    def __rsub__(self, other):
        return self._binary_helper(other, op='__rsub__')

    def __isub__(self, other):
        return self._binary_helper(other, op='__isub__')

    def __mul__(self, other):
        return self._binary_helper(other, op='__mul__')

    def __rmul__(self, other):
        return self._binary_helper(other, op='__rmul__')

    def __imul__(self, other):
        return self._binary_helper(other, op='__imul__')

    def __div__(self, other):
        return self._binary_helper(other, op='__div__')

    def __rdiv__(self, other):
        return self._binary_helper(other, op='__rdiv__')

Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
222
223
224
    def __idiv__(self, other):
        return self._binary_helper(other, op='__idiv__')

225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
    def __truediv__(self, other):
        return self._binary_helper(other, op='__truediv__')

    def __rtruediv__(self, other):
        return self._binary_helper(other, op='__rtruediv__')

    def __pow__(self, other):
        return self._binary_helper(other, op='__pow__')

    def __rpow__(self, other):
        return self._binary_helper(other, op='__rpow__')

    def __ipow__(self, other):
        return self._binary_helper(other, op='__ipow__')

    def __eq__(self, other):
        return self._binary_helper(other, op='__eq__')

    def __ne__(self, other):
        return self._binary_helper(other, op='__ne__')

    def __neg__(self):
Martin Reinecke's avatar
Martin Reinecke committed
247
        return data_object(self._shape, -self._data, self._distaxis)
248
249

    def __abs__(self):
Martin Reinecke's avatar
Martin Reinecke committed
250
        return data_object(self._shape, np.abs(self._data), self._distaxis)
251
252

    def all(self):
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
253
        return self.sum() == self.size
254
255

    def any(self):
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
256
        return self.sum() != 0
257

Martin Reinecke's avatar
fixes    
Martin Reinecke committed
258
259
    def fill(self, value):
        self._data.fill(value)
260

Martin Reinecke's avatar
Martin Reinecke committed
261

Martin Reinecke's avatar
Martin Reinecke committed
262
def full(shape, fill_value, dtype=None, distaxis=0):
Martin Reinecke's avatar
Martin Reinecke committed
263
264
    return data_object(shape, np.full(local_shape(shape, distaxis),
                                      fill_value, dtype), distaxis)
265
266


Martin Reinecke's avatar
fixes    
Martin Reinecke committed
267
def empty(shape, dtype=None, distaxis=0):
Martin Reinecke's avatar
Martin Reinecke committed
268
269
    return data_object(shape, np.empty(local_shape(shape, distaxis),
                                       dtype), distaxis)
270
271


Martin Reinecke's avatar
fixes    
Martin Reinecke committed
272
def zeros(shape, dtype=None, distaxis=0):
Martin Reinecke's avatar
Martin Reinecke committed
273
274
    return data_object(shape, np.zeros(local_shape(shape, distaxis), dtype),
                       distaxis)
275
276


Martin Reinecke's avatar
fixes    
Martin Reinecke committed
277
def ones(shape, dtype=None, distaxis=0):
Martin Reinecke's avatar
Martin Reinecke committed
278
279
    return data_object(shape, np.ones(local_shape(shape, distaxis), dtype),
                       distaxis)
280
281
282
283
284
285
286


def empty_like(a, dtype=None):
    return data_object(np.empty_like(a._data, dtype))


def vdot(a, b):
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
287
    tmp = np.array(np.vdot(a._data, b._data))
Martin Reinecke's avatar
Martin Reinecke committed
288
289
    res = np.empty((), dtype=tmp.dtype)
    _comm.Allreduce(tmp, res, MPI.SUM)
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
290
    return res[()]
291
292
293
294
295
296
297


def _math_helper(x, function, out):
    if out is not None:
        function(x._data, out=out._data)
        return out
    else:
Martin Reinecke's avatar
Martin Reinecke committed
298
        return data_object(x.shape, function(x._data), x._distaxis)
299
300
301
302
303
304
305
306
307
308
309
310
311
312


def abs(a, out=None):
    return _math_helper(a, np.abs, out)


def exp(a, out=None):
    return _math_helper(a, np.exp, out)


def log(a, out=None):
    return _math_helper(a, np.log, out)


Martin Reinecke's avatar
Martin Reinecke committed
313
314
315
316
def tanh(a, out=None):
    return _math_helper(a, np.tanh, out)


317
318
319
320
def sqrt(a, out=None):
    return _math_helper(a, np.sqrt, out)


Martin Reinecke's avatar
Martin Reinecke committed
321
322
323
324
325
326
327
328
329
330
331
332
def from_object(object, dtype, copy, set_locked):
    if dtype is None:
        dtype = object.dtype
    dtypes_equal = dtype == object.dtype
    if set_locked and dtypes_equal and locked(object):
        return object
    if not dtypes_equal and not copy:
        raise ValueError("cannot change data type without copying")
    if set_locked and not copy:
        raise ValueError("cannot lock object without copying")
    data = np.array(object._data, dtype=dtype, copy=copy)
    if set_locked:
Martin Reinecke's avatar
fix    
Martin Reinecke committed
333
        data.flags.writeable = False
Martin Reinecke's avatar
Martin Reinecke committed
334
    return data_object(object._shape, data, distaxis=object._distaxis)
335
336


Martin Reinecke's avatar
Martin Reinecke committed
337
338
# This function draws all random numbers on all tasks, to produce the same
# array independent on the number of tasks
Martin Reinecke's avatar
Martin Reinecke committed
339
340
341
# MR FIXME: depending on what is really wanted/needed (i.e. same result
# independent of number of tasks, performance etc.) we need to adjust the
# algorithm.
Martin Reinecke's avatar
Martin Reinecke committed
342
def from_random(random_type, shape, dtype=np.float64, **kwargs):
343
    generator_function = getattr(Random, random_type)
Martin Reinecke's avatar
Martin Reinecke committed
344
345
346
347
348
349
350
    for i in range(ntask):
        lshape = list(shape)
        lshape[0] = _shareSize(shape[0], ntask, i)
        ldat = generator_function(dtype=dtype, shape=lshape, **kwargs)
        if i == rank:
            outdat = ldat
    return from_local_data(shape, outdat, distaxis=0)
351

Martin Reinecke's avatar
Martin Reinecke committed
352

Martin Reinecke's avatar
Martin Reinecke committed
353
354
355
356
def local_data(arr):
    return arr._data


357
358
def ibegin_from_shape(glob_shape, distaxis=0):
    res = [0] * len(glob_shape)
Martin Reinecke's avatar
Martin Reinecke committed
359
    if distaxis < 0:
360
361
362
363
364
        return res
    res[distaxis] = _shareRange(glob_shape[distaxis], ntask, rank)[0]
    return tuple(res)


Martin Reinecke's avatar
fixes    
Martin Reinecke committed
365
366
def ibegin(arr):
    res = [0] * arr._data.ndim
Martin Reinecke's avatar
Martin Reinecke committed
367
    res[arr._distaxis] = _shareRange(arr._shape[arr._distaxis], ntask, rank)[0]
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
368
    return tuple(res)
Martin Reinecke's avatar
Martin Reinecke committed
369
370


Martin Reinecke's avatar
fixes    
Martin Reinecke committed
371
372
def np_allreduce_sum(arr):
    res = np.empty_like(arr)
Martin Reinecke's avatar
Martin Reinecke committed
373
    _comm.Allreduce(arr, res, MPI.SUM)
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
374
    return res
Martin Reinecke's avatar
Martin Reinecke committed
375
376
377
378
379
380


def distaxis(arr):
    return arr._distaxis


Martin Reinecke's avatar
Martin Reinecke committed
381
def from_local_data(shape, arr, distaxis=0):
Martin Reinecke's avatar
Martin Reinecke committed
382
383
384
    return data_object(shape, arr, distaxis)


Martin Reinecke's avatar
Martin Reinecke committed
385
386
def from_global_data(arr, distaxis=0):
    if distaxis == -1:
Martin Reinecke's avatar
Martin Reinecke committed
387
        return data_object(arr.shape, arr, distaxis)
Martin Reinecke's avatar
Martin Reinecke committed
388
    lo, hi = _shareRange(arr.shape[distaxis], ntask, rank)
Martin Reinecke's avatar
Martin Reinecke committed
389
    sl = [slice(None)]*len(arr.shape)
Martin Reinecke's avatar
Martin Reinecke committed
390
    sl[distaxis] = slice(lo, hi)
Martin Reinecke's avatar
Martin Reinecke committed
391
392
393
    return data_object(arr.shape, arr[sl], distaxis)


Martin Reinecke's avatar
Martin Reinecke committed
394
395
def to_global_data(arr):
    if arr._distaxis == -1:
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
396
397
398
399
400
        return arr._data
    tmp = redistribute(arr, dist=-1)
    return tmp._data


Martin Reinecke's avatar
Martin Reinecke committed
401
def redistribute(arr, dist=None, nodist=None):
Martin Reinecke's avatar
Martin Reinecke committed
402
403
404
    if dist is not None:
        if nodist is not None:
            raise ValueError
Martin Reinecke's avatar
Martin Reinecke committed
405
        if dist == arr._distaxis:
Martin Reinecke's avatar
Martin Reinecke committed
406
407
408
409
410
411
            return arr
    else:
        if nodist is None:
            raise ValueError
        if arr._distaxis not in nodist:
            return arr
Martin Reinecke's avatar
Martin Reinecke committed
412
        dist = -1
Martin Reinecke's avatar
Martin Reinecke committed
413
414
        for i in range(len(arr.shape)):
            if i not in nodist:
Martin Reinecke's avatar
Martin Reinecke committed
415
                dist = i
Martin Reinecke's avatar
Martin Reinecke committed
416
                break
Martin Reinecke's avatar
Martin Reinecke committed
417

Martin Reinecke's avatar
Martin Reinecke committed
418
    if arr._distaxis == -1:  # all data available, just pick the proper subset
Martin Reinecke's avatar
Martin Reinecke committed
419
        return from_global_data(arr._data, dist)
Martin Reinecke's avatar
Martin Reinecke committed
420
    if dist == -1:  # gather all data on all tasks
Martin Reinecke's avatar
Martin Reinecke committed
421
        tmp = np.moveaxis(arr._data, arr._distaxis, 0)
Martin Reinecke's avatar
Martin Reinecke committed
422
423
        slabsize = np.prod(tmp.shape[1:])*tmp.itemsize
        sz = np.empty(ntask, dtype=np.int)
Martin Reinecke's avatar
Martin Reinecke committed
424
        for i in range(ntask):
Martin Reinecke's avatar
Martin Reinecke committed
425
426
427
428
            sz[i] = slabsize*_shareSize(arr.shape[arr._distaxis], ntask, i)
        disp = np.empty(ntask, dtype=np.int)
        disp[0] = 0
        disp[1:] = np.cumsum(sz[:-1])
Martin Reinecke's avatar
Martin Reinecke committed
429
        tmp = np.require(tmp, requirements="C")
Martin Reinecke's avatar
Martin Reinecke committed
430
431
        out = np.empty(arr.size, dtype=arr.dtype)
        _comm.Allgatherv(tmp, [out, sz, disp, MPI.BYTE])
Martin Reinecke's avatar
Martin Reinecke committed
432
433
434
435
        shp = np.array(arr._shape)
        shp[1:arr._distaxis+1] = shp[0:arr._distaxis]
        shp[0] = arr.shape[arr._distaxis]
        out = out.reshape(shp)
Martin Reinecke's avatar
Martin Reinecke committed
436
        out = np.moveaxis(out, 0, arr._distaxis)
Martin Reinecke's avatar
Martin Reinecke committed
437
        return from_global_data(out, distaxis=-1)
Martin Reinecke's avatar
Martin Reinecke committed
438

Martin Reinecke's avatar
Martin Reinecke committed
439
    # real redistribution via Alltoallv
Martin Reinecke's avatar
Martin Reinecke committed
440
    ssz0 = arr._data.size//arr.shape[dist]
Martin Reinecke's avatar
Martin Reinecke committed
441
    ssz = np.empty(ntask, dtype=np.int)
Martin Reinecke's avatar
Martin Reinecke committed
442
443
444
    rszall = arr.size//arr.shape[dist]*_shareSize(arr.shape[dist], ntask, rank)
    rbuf = np.empty(rszall, dtype=arr.dtype)
    rsz0 = rszall//arr.shape[arr._distaxis]
Martin Reinecke's avatar
Martin Reinecke committed
445
    rsz = np.empty(ntask, dtype=np.int)
Martin Reinecke's avatar
Martin Reinecke committed
446
447
448
449
450
451
452
453
454
455
456
457
    if dist == 0:  # shortcut possible
        sbuf = np.ascontiguousarray(arr._data)
        for i in range(ntask):
            lo, hi = _shareRange(arr.shape[dist], ntask, i)
            ssz[i] = ssz0*(hi-lo)
            rsz[i] = rsz0*_shareSize(arr.shape[arr._distaxis], ntask, i)
    else:
        sbuf = np.empty(arr._data.size, dtype=arr.dtype)
        sslice = [slice(None)]*arr._data.ndim
        ofs = 0
        for i in range(ntask):
            lo, hi = _shareRange(arr.shape[dist], ntask, i)
Martin Reinecke's avatar
Martin Reinecke committed
458
            sslice[dist] = slice(lo, hi)
Martin Reinecke's avatar
Martin Reinecke committed
459
460
461
462
463
464
            ssz[i] = ssz0*(hi-lo)
            sbuf[ofs:ofs+ssz[i]] = arr._data[sslice].flat
            ofs += ssz[i]
            rsz[i] = rsz0*_shareSize(arr.shape[arr._distaxis], ntask, i)
    ssz *= arr._data.itemsize
    rsz *= arr._data.itemsize
Martin Reinecke's avatar
Martin Reinecke committed
465
466
    sdisp = np.append(0, np.cumsum(ssz[:-1]))
    rdisp = np.append(0, np.cumsum(rsz[:-1]))
Martin Reinecke's avatar
Martin Reinecke committed
467
468
    s_msg = [sbuf, (ssz, sdisp), MPI.BYTE]
    r_msg = [rbuf, (rsz, rdisp), MPI.BYTE]
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
469
    _comm.Alltoallv(s_msg, r_msg)
Martin Reinecke's avatar
Martin Reinecke committed
470
    del sbuf  # free memory
Martin Reinecke's avatar
Martin Reinecke committed
471
472
473
474
475
476
477
478
479
    if arr._distaxis == 0:
        rbuf = rbuf.reshape(local_shape(arr.shape, dist))
        arrnew = from_local_data(arr.shape, rbuf, distaxis=dist)
    else:
        arrnew = empty(arr.shape, dtype=arr.dtype, distaxis=dist)
        rslice = [slice(None)]*arr._data.ndim
        ofs = 0
        for i in range(ntask):
            lo, hi = _shareRange(arr.shape[arr._distaxis], ntask, i)
Martin Reinecke's avatar
Martin Reinecke committed
480
            rslice[arr._distaxis] = slice(lo, hi)
Martin Reinecke's avatar
Martin Reinecke committed
481
482
483
484
            sz = rsz[i]//arr._data.itemsize
            arrnew._data[rslice].flat = rbuf[ofs:ofs+sz]
            ofs += sz
    return arrnew
Martin Reinecke's avatar
Martin Reinecke committed
485
486


Martin Reinecke's avatar
Martin Reinecke committed
487
488
def transpose(arr):
    if len(arr.shape) != 2 or arr._distaxis != 0:
Martin Reinecke's avatar
Martin Reinecke committed
489
        raise ValueError("bad input")
Martin Reinecke's avatar
Martin Reinecke committed
490
491
492
493
494
495
496
497
498
499
500
    ssz0 = arr._data.size//arr.shape[1]
    ssz = np.empty(ntask, dtype=np.int)
    rszall = arr.size//arr.shape[1]*_shareSize(arr.shape[1], ntask, rank)
    rbuf = np.empty(rszall, dtype=arr.dtype)
    rsz0 = rszall//arr.shape[0]
    rsz = np.empty(ntask, dtype=np.int)
    sbuf = np.empty(arr._data.size, dtype=arr.dtype)
    ofs = 0
    for i in range(ntask):
        lo, hi = _shareRange(arr.shape[1], ntask, i)
        ssz[i] = ssz0*(hi-lo)
Martin Reinecke's avatar
Martin Reinecke committed
501
        sbuf[ofs:ofs+ssz[i]] = arr._data[:, lo:hi].flat
Martin Reinecke's avatar
Martin Reinecke committed
502
503
504
505
506
507
508
509
510
511
512
513
        ofs += ssz[i]
        rsz[i] = rsz0*_shareSize(arr.shape[0], ntask, i)
    ssz *= arr._data.itemsize
    rsz *= arr._data.itemsize
    sdisp = np.append(0, np.cumsum(ssz[:-1]))
    rdisp = np.append(0, np.cumsum(rsz[:-1]))
    s_msg = [sbuf, (ssz, sdisp), MPI.BYTE]
    r_msg = [rbuf, (rsz, rdisp), MPI.BYTE]
    _comm.Alltoallv(s_msg, r_msg)
    del sbuf  # free memory
    arrnew = empty((arr.shape[1], arr.shape[0]), dtype=arr.dtype, distaxis=0)
    ofs = 0
Martin Reinecke's avatar
Martin Reinecke committed
514
    sz2 = _shareSize(arr.shape[1], ntask, rank)
Martin Reinecke's avatar
Martin Reinecke committed
515
516
517
    for i in range(ntask):
        lo, hi = _shareRange(arr.shape[0], ntask, i)
        sz = rsz[i]//arr._data.itemsize
Martin Reinecke's avatar
Martin Reinecke committed
518
        arrnew._data[:, lo:hi] = rbuf[ofs:ofs+sz].reshape(hi-lo, sz2).T
Martin Reinecke's avatar
Martin Reinecke committed
519
520
521
522
        ofs += sz
    return arrnew


Martin Reinecke's avatar
Martin Reinecke committed
523
524
def default_distaxis():
    return 0
525
526
527
528
529
530
531
532


def lock(arr):
    arr._data.flags.writeable = False


def locked(arr):
    return not arr._data.flags.writeable