nifty_rg.py 73.8 KB
Newer Older
1
2
# NIFTY (Numerical Information Field Theory) has been developed at the
# Max-Planck-Institute for Astrophysics.
Marco Selig's avatar
Marco Selig committed
3
##
4
# Copyright (C) 2015 Max-Planck-Society
Marco Selig's avatar
Marco Selig committed
5
##
6
7
# Author: Marco Selig
# Project homepage: <http://www.mpa-garching.mpg.de/ift/nifty/>
Marco Selig's avatar
Marco Selig committed
8
##
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
Marco Selig's avatar
Marco Selig committed
13
##
14
15
16
17
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
# See the GNU General Public License for more details.
Marco Selig's avatar
Marco Selig committed
18
##
19
20
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
Marco Selig's avatar
Marco Selig committed
21
22
23
24
25
26
27
28
29
30

"""
    ..                  __   ____   __
    ..                /__/ /   _/ /  /_
    ..      __ ___    __  /  /_  /   _/  __   __
    ..    /   _   | /  / /   _/ /  /   /  / /  /
    ..   /  / /  / /  / /  /   /  /_  /  /_/  /
    ..  /__/ /__/ /__/ /__/    \___/  \___   /  rg
    ..                               /______/

Marco Selig's avatar
Marco Selig committed
31
    NIFTY submodule for regular Cartesian grids.
Marco Selig's avatar
Marco Selig committed
32
33
34

"""
from __future__ import division
Ultimanet's avatar
Ultimanet committed
35

36
import itertools
Marco Selig's avatar
Marco Selig committed
37
import numpy as np
38
import os
39
from scipy.special import erf
Marco Selig's avatar
Marco Selig committed
40
41
42
import pylab as pl
from matplotlib.colors import LogNorm as ln
from matplotlib.ticker import LogFormatter as lf
Ultimanet's avatar
Ultimanet committed
43

44
45
from d2o import STRATEGIES as DISTRIBUTION_STRATEGIES

csongor's avatar
csongor committed
46
47
48
from nifty.nifty_core import point_space
from nifty.nifty_field import field

49
import nifty_fft
50
51
52
from nifty.config import about,\
                         nifty_configuration as gc,\
                         dependency_injector as gdi
Ultimanet's avatar
Ultimanet committed
53
from nifty.nifty_paradict import rg_space_paradict
54
55
from nifty.nifty_power_indices import rg_power_indices
from nifty.nifty_random import random
Ultima's avatar
Ultima committed
56
import nifty.nifty_utilities as utilities
57

Ultima's avatar
Ultima committed
58
MPI = gdi[gc['mpi_module']]
59
RG_DISTRIBUTION_STRATEGIES = DISTRIBUTION_STRATEGIES['global']
Ultimanet's avatar
Ultimanet committed
60

Marco Selig's avatar
Marco Selig committed
61

62
class rg_space(point_space):
Marco Selig's avatar
Marco Selig committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
    """
        ..      _____   _______
        ..    /   __/ /   _   /
        ..   /  /    /  /_/  /
        ..  /__/     \____  /  space class
        ..          /______/

        NIFTY subclass for spaces of regular Cartesian grids.

        Parameters
        ----------
        num : {int, numpy.ndarray}
            Number of gridpoints or numbers of gridpoints along each axis.
        naxes : int, *optional*
            Number of axes (default: None).
        zerocenter : {bool, numpy.ndarray}, *optional*
            Whether the Fourier zero-mode is located in the center of the grid
            (or the center of each axis speparately) or not (default: True).
        hermitian : bool, *optional*
            Whether the fields living in the space follow hermitian symmetry or
            not (default: True).
        purelyreal : bool, *optional*
            Whether the field values are purely real (default: True).
        dist : {float, numpy.ndarray}, *optional*
            Distance between two grid points along each axis (default: None).
        fourier : bool, *optional*
            Whether the space represents a Fourier or a position grid
            (default: False).

        Notes
        -----
        Only even numbers of grid points per axis are supported.
        The basis transformations between position `x` and Fourier mode `k`
        rely on (inverse) fast Fourier transformations using the
        :math:`exp(2 \pi i k^\dagger x)`-formulation.

        Attributes
        ----------
        para : numpy.ndarray
            One-dimensional array containing information on the axes of the
            space in the following form: The first entries give the grid-points
            along each axis in reverse order; the next entry is 0 if the
            fields defined on the space are purely real-valued, 1 if they are
            hermitian and complex, and 2 if they are not hermitian, but
            complex-valued; the last entries hold the information on whether
            the axes are centered on zero or not, containing a one for each
            zero-centered axis and a zero for each other one, in reverse order.
110
        dtype : numpy.dtype
Marco Selig's avatar
Marco Selig committed
111
112
113
114
115
116
117
118
119
120
121
122
            Data type of the field values for a field defined on this space,
            either ``numpy.float64`` or ``numpy.complex128``.
        discrete : bool
            Whether or not the underlying space is discrete, always ``False``
            for regular grids.
        vol : numpy.ndarray
            One-dimensional array containing the distances between two grid
            points along each axis, in reverse order. By default, the total
            length of each axis is assumed to be one.
        fourier : bool
            Whether or not the grid represents a Fourier basis.
    """
123
    epsilon = 0.0001  # relative precision for comparisons
Marco Selig's avatar
Marco Selig committed
124

125
    def __init__(self, shape, zerocenter=False, complexity=0, distances=None,
csongor's avatar
csongor committed
126
                 harmonic=False, fft_module=gc['fft_module']):
Marco Selig's avatar
Marco Selig committed
127
128
129
130
131
132
133
134
135
136
137
138
        """
            Sets the attributes for an rg_space class instance.

            Parameters
            ----------
            num : {int, numpy.ndarray}
                Number of gridpoints or numbers of gridpoints along each axis.
            naxes : int, *optional*
                Number of axes (default: None).
            zerocenter : {bool, numpy.ndarray}, *optional*
                Whether the Fourier zero-mode is located in the center of the
                grid (or the center of each axis speparately) or not
Ultimanet's avatar
Ultimanet committed
139
                (default: False).
Marco Selig's avatar
Marco Selig committed
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
            hermitian : bool, *optional*
                Whether the fields living in the space follow hermitian
                symmetry or not (default: True).
            purelyreal : bool, *optional*
                Whether the field values are purely real (default: True).
            dist : {float, numpy.ndarray}, *optional*
                Distance between two grid points along each axis
                (default: None).
            fourier : bool, *optional*
                Whether the space represents a Fourier or a position grid
                (default: False).

            Returns
            -------
            None
        """
Ultima's avatar
Ultima committed
156
        self._cache_dict = {'check_codomain':{}}
157
        self.paradict = rg_space_paradict(shape=shape,
158
159
                                          complexity=complexity,
                                          zerocenter=zerocenter)
160
        # set dtype
161
        if self.paradict['complexity'] == 0:
162
            self.dtype = np.dtype('float64')
Marco Selig's avatar
Marco Selig committed
163
        else:
164
            self.dtype = np.dtype('complex128')
165

166
        # set volume/distances
167
168
169
170
171
        naxes = len(self.paradict['shape'])
        if distances is None:
            distances = 1 / np.array(self.paradict['shape'], dtype=np.float)
        elif np.isscalar(distances):
            distances = np.ones(naxes, dtype=np.float) * distances
Marco Selig's avatar
Marco Selig committed
172
        else:
173
174
175
176
            distances = np.array(distances, dtype=np.float)
            if np.size(distances) == 1:
                distances = distances * np.ones(naxes, dtype=np.float)
            if np.size(distances) != naxes:
177
                raise ValueError(about._errors.cstring(
178
179
180
                    "ERROR: size mismatch ( " + str(np.size(distances)) +
                    " <> " + str(naxes) + " )."))
        if np.any(distances <= 0):
181
            raise ValueError(about._errors.cstring(
182
                "ERROR: nonpositive distance(s)."))
Marco Selig's avatar
Marco Selig committed
183

184
        self.distances = tuple(distances)
185
186
187
        self.harmonic = bool(harmonic)
        self.discrete = False

188
189
        # Initializes the fast-fourier-transform machine, which will be used
        # to transform the space
Ultima's avatar
Ultima committed
190
        if not gc.validQ('fft_module', fft_module):
191
            about.warnings.cprint("WARNING: fft_module set to default.")
Ultima's avatar
Ultima committed
192
193
            fft_module = gc['fft_module']
        self.fft_machine = nifty_fft.fft_factory(fft_module)
194
195
196

        # Initialize the power_indices object which takes care of kindex,
        # pindex, rho and the pundex for a given set of parameters
csongor's avatar
csongor committed
197
198

        # TODO harmonic = True doesn't work yet
199
        if self.harmonic:
200
201
            self.power_indices = rg_power_indices(
                    shape=self.get_shape(),
202
                    dgrid=distances,
203
204
                    zerocentered=self.paradict['zerocenter'],
                    allowed_distribution_strategies=RG_DISTRIBUTION_STRATEGIES)
205

206
207
    @property
    def para(self):
208
        temp = np.array(self.paradict['shape'] +
209
210
                        [self.paradict['complexity']] +
                        self.paradict['zerocenter'], dtype=int)
211
        return temp
212

213
214
    @para.setter
    def para(self, x):
215
        self.paradict['shape'] = x[:(np.size(x) - 1) // 2]
216
217
        self.paradict['zerocenter'] = x[(np.size(x) + 1) // 2:]
        self.paradict['complexity'] = x[(np.size(x) - 1) // 2]
Ultimanet's avatar
Ultimanet committed
218

Ultima's avatar
Ultima committed
219
220
221
    def __hash__(self):
        result_hash = 0
        for (key, item) in vars(self).items():
Ultima's avatar
Ultima committed
222
            if key in ['_cache_dict', 'fft_machine', 'power_indices']:
Ultima's avatar
Ultima committed
223
224
225
226
                continue
            result_hash ^= item.__hash__() * hash(key)
        return result_hash

227
228
229
230
231
232
233
234
235
236
237
    # __identiftier__ returns an object which contains all information needed
    # to uniquely identify a space. It returns a (immutable) tuple which
    # therefore can be compared.
    # The rg_space version of __identifier__ filters out the vars-information
    # which is describing the rg_space's structure
    def _identifier(self):
        # Extract the identifying parts from the vars(self) dict.
        temp = [(ii[0],
                 ((lambda x: tuple(x) if
                  isinstance(x, np.ndarray) else x)(ii[1])))
                for ii in vars(self).iteritems()
Ultima's avatar
Ultima committed
238
                if ii[0] not in ['_cache_dict', 'fft_machine',
csongor's avatar
csongor committed
239
                                 'power_indices']]
240
241
        # Return the sorted identifiers as a tuple.
        return tuple(sorted(temp))
Ultimanet's avatar
Ultimanet committed
242

243
    def copy(self):
244
        return rg_space(shape=self.paradict['shape'],
245
246
                        complexity=self.paradict['complexity'],
                        zerocenter=self.paradict['zerocenter'],
247
                        distances=self.distances,
248
                        harmonic=self.harmonic,
csongor's avatar
csongor committed
249
                        fft_module=self.fft_machine.name)
250
251

    def get_shape(self):
252
        return tuple(self.paradict['shape'])
Marco Selig's avatar
Marco Selig committed
253

254
255
256
257
    def _cast_to_d2o(self, x, dtype=None, hermitianize=True, **kwargs):
        casted_x = super(rg_space, self)._cast_to_d2o(x=x,
                                                      dtype=dtype,
                                                      **kwargs)
Ultima's avatar
Ultima committed
258
        if x is not None and hermitianize and \
Ultima's avatar
Ultima committed
259
                self.paradict['complexity'] == 1 and not casted_x.hermitian:
260
261
262
263
            about.warnings.cflush(
                 "WARNING: Data gets hermitianized. This operation is " +
                 "extremely expensive\n")
            casted_x = utilities.hermitianize(casted_x)
Marco Selig's avatar
Marco Selig committed
264

265
        return casted_x
266

267
268
269
270
    def _cast_to_np(self, x, dtype=None, hermitianize=True, **kwargs):
        casted_x = super(rg_space, self)._cast_to_np(x=x,
                                                     dtype=dtype,
                                                     **kwargs)
Ultima's avatar
Ultima committed
271
        if x is not None and hermitianize and self.paradict['complexity'] == 1:
272
273
274
275
            about.warnings.cflush(
                 "WARNING: Data gets hermitianized. This operation is " +
                 "extremely expensive\n")
            casted_x = utilities.hermitianize(casted_x)
Marco Selig's avatar
Marco Selig committed
276

277
        return casted_x
ultimanet's avatar
ultimanet committed
278

279
    def enforce_power(self, spec, size=None, kindex=None, codomain=None,
Ultima's avatar
Ultima committed
280
                      **kwargs):
Marco Selig's avatar
Marco Selig committed
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
        """
            Provides a valid power spectrum array from a given object.

            Parameters
            ----------
            spec : {float, list, numpy.ndarray, nifty.field, function}
                Fiducial power spectrum from which a valid power spectrum is to
                be calculated. Scalars are interpreted as constant power
                spectra.

            Returns
            -------
            spec : numpy.ndarray
                Valid power spectrum.

            Other parameters
            ----------------
            size : int, *optional*
                Number of bands the power spectrum shall have (default: None).
            kindex : numpy.ndarray, *optional*
                Scale of each band.
            codomain : nifty.space, *optional*
                A compatible codomain for power indexing (default: None).
            log : bool, *optional*
305
306
307
                Flag specifying if the spectral binning is performed on
                logarithmic scale or not; if set, the number of used bins is
                set automatically (if not given otherwise); by default no
308
                binning is done (default: None).
Marco Selig's avatar
Marco Selig committed
309
            nbin : integer, *optional*
310
                Number of used spectral bins; if given `log` is set to
311
312
                ``False``; iintegers below the minimum of 3 induce an automatic
                setting; by default no binning is done (default: None).
Marco Selig's avatar
Marco Selig committed
313
314
315
            binbounds : {list, array}, *optional*
                User specific inner boundaries of the bins, which are preferred
                over the above parameters; by default no binning is done
316
                (default: None).
Marco Selig's avatar
Marco Selig committed
317
        """
318
319
320
321
322
323
324

        # Setting up the local variables: kindex
        # The kindex is only necessary if spec is a function or if
        # the size is not set explicitly
        if kindex is None and (size is None or callable(spec)):
            # Determine which space should be used to get the kindex
            if self.harmonic:
325
326
                kindex_supply_space = self
            else:
327
328
                # Check if the given codomain is compatible with the space
                try:
329
330
331
                    assert(self.check_codomain(codomain))
                    kindex_supply_space = codomain
                except(AssertionError):
332
333
334
335
                    about.warnings.cprint("WARNING: Supplied codomain is " +
                                          "incompatible. Generating a " +
                                          "generic codomain. This can " +
                                          "be expensive!")
336
                    kindex_supply_space = self.get_codomain()
Ultima's avatar
Ultima committed
337

338
            kindex = kindex_supply_space.\
Ultima's avatar
Ultima committed
339
                power_indices.get_index_dict(**kwargs)['kindex']
340

341
342
343
        return self._enforce_power_helper(spec=spec,
                                          size=size,
                                          kindex=kindex)
344

Ultima's avatar
Ultima committed
345
    def _check_codomain(self, codomain):
Marco Selig's avatar
Marco Selig committed
346
        """
347
            Checks whether a given codomain is compatible to the space or not.
Marco Selig's avatar
Marco Selig committed
348
349
350

            Parameters
            ----------
351
352
            codomain : nifty.space
                Space to be checked for compatibility.
Marco Selig's avatar
Marco Selig committed
353
354
355

            Returns
            -------
356
357
            check : bool
                Whether or not the given codomain is compatible to the space.
Marco Selig's avatar
Marco Selig committed
358
        """
359
360
        if codomain is None:
            return False
361

362
        if not isinstance(codomain, rg_space):
363
364
            raise TypeError(about._errors.cstring(
                "ERROR: The given codomain must be a nifty rg_space."))
365

366
        # check number of number and size of axes
367
368
        if not np.all(np.array(self.paradict['shape']) ==
                      np.array(codomain.paradict['shape'])):
369
            return False
Ultima's avatar
Ultima committed
370

371
372
373
        # check harmonic flag
        if self.harmonic == codomain.harmonic:
            return False
Ultima's avatar
Ultima committed
374

375
376
377
378
        # check complexity-type
        # prepare the shorthands
        dcomp = self.paradict['complexity']
        cocomp = codomain.paradict['complexity']
Ultima's avatar
Ultima committed
379

380
381
382
383
384
385
386
387
388
389
390
391
392
393
        # Case 1: if the domain is copmleteley complex
        # -> the codomain must be complex, too
        if dcomp == 2:
            if cocomp != 2:
                return False
        # Case 2: domain is hermitian
        # -> codmomain can be real. If it is marked as hermitian or even
        # fully complex, a warning is raised
        elif dcomp == 1:
            if cocomp > 0:
                about.warnings.cprint("WARNING: Unrecommended codomain! " +
                                      "The domain is hermitian, hence the " +
                                      "codomain should be restricted to " +
                                      "real values!")
Ultima's avatar
Ultima committed
394

395
396
397
398
399
400
401
402
403
404
        # Case 3: domain is real
        # -> codmain should be hermitian
        elif dcomp == 0:
            if cocomp == 2:
                about.warnings.cprint("WARNING: Unrecommended codomain! " +
                                      "The domain is real, hence the " +
                                      "codomain should be restricted to " +
                                      "hermitian configurations!")
            elif cocomp == 0:
                return False
Ultima's avatar
Ultima committed
405

406
407
        # Check if the distances match, i.e. dist'=1/(num*dist)
        if not np.all(
408
                np.absolute(np.array(self.paradict['shape']) *
409
410
411
                            np.array(self.distances) *
                            np.array(codomain.distances) - 1) < self.epsilon):
            return False
Ultima's avatar
Ultima committed
412

413
        return True
414

415
    def get_codomain(self, cozerocenter=None, **kwargs):
Marco Selig's avatar
Marco Selig committed
416
        """
417
418
419
            Generates a compatible codomain to which transformations are
            reasonable, i.e.\  either a shifted grid or a Fourier conjugate
            grid.
Marco Selig's avatar
Marco Selig committed
420
421
422

            Parameters
            ----------
423
424
425
426
427
            coname : string, *optional*
                String specifying a desired codomain (default: None).
            cozerocenter : {bool, numpy.ndarray}, *optional*
                Whether or not the grid is zerocentered for each axis or not
                (default: None).
Marco Selig's avatar
Marco Selig committed
428
429
430

            Returns
            -------
431
432
            codomain : nifty.rg_space
                A compatible codomain.
Marco Selig's avatar
Marco Selig committed
433

434
435
436
437
438
439
            Notes
            -----
            Possible arguments for `coname` are ``'f'`` in which case the
            codomain arises from a Fourier transformation, ``'i'`` in which
            case it arises from an inverse Fourier transformation.If no
            `coname` is given, the Fourier conjugate grid is produced.
Marco Selig's avatar
Marco Selig committed
440
        """
441
442
443
444
445
446
447
448
        naxes = len(self.get_shape())
        # Parse the cozerocenter input
        if(cozerocenter is None):
            cozerocenter = self.paradict['zerocenter']
        # if the input is something scalar, cast it to a boolean
        elif(np.isscalar(cozerocenter)):
            cozerocenter = bool(cozerocenter)
        # if it is not a scalar...
Marco Selig's avatar
Marco Selig committed
449
        else:
450
451
452
453
454
455
456
457
458
459
460
            # ...cast it to a numpy array of booleans
            cozerocenter = np.array(cozerocenter, dtype=np.bool)
            # if it was a list of length 1, extract the boolean
            if(np.size(cozerocenter) == 1):
                cozerocenter = np.asscalar(cozerocenter)
            # if the length of the input does not match the number of
            # dimensions, raise an exception
            elif(np.size(cozerocenter) != naxes):
                raise ValueError(about._errors.cstring(
                    "ERROR: size mismatch ( " +
                    str(np.size(cozerocenter)) + " <> " + str(naxes) + " )."))
Marco Selig's avatar
Marco Selig committed
461

462
        # Set up the initialization variables
463
464
465
        shape = self.paradict['shape']
        distances = 1 / (np.array(self.paradict['shape']) *
                         np.array(self.distances))
466
        fft_module = self.fft_machine.name
467
        complexity = {0: 1, 1: 0, 2: 2}[self.paradict['complexity']]
468
        harmonic = bool(not self.harmonic)
Marco Selig's avatar
Marco Selig committed
469

470
        new_space = rg_space(shape,
471
472
                             zerocenter=cozerocenter,
                             complexity=complexity,
473
                             distances=distances,
474
                             harmonic=harmonic,
csongor's avatar
csongor committed
475
                             fft_module=fft_module)
476
        return new_space
Marco Selig's avatar
Marco Selig committed
477

478
    def get_random_values(self, **kwargs):
Marco Selig's avatar
Marco Selig committed
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
        """
            Generates random field values according to the specifications given
            by the parameters, taking into account possible complex-valuedness
            and hermitian symmetry.

            Returns
            -------
            x : numpy.ndarray
                Valid field values.

            Other parameters
            ----------------
            random : string, *optional*
                Specifies the probability distribution from which the random
                numbers are to be drawn.
                Supported distributions are:

                - "pm1" (uniform distribution over {+1,-1} or {+1,+i,-1,-i}
497
498
                - "gau" (normal distribution with zero-mean and a given
                    standard
Marco Selig's avatar
Marco Selig committed
499
500
501
502
503
504
505
506
507
508
                    deviation or variance)
                - "syn" (synthesizes from a given power spectrum)
                - "uni" (uniform distribution over [vmin,vmax[)

                (default: None).
            dev : float, *optional*
                Standard deviation (default: 1).
            var : float, *optional*
                Variance, overriding `dev` if both are specified
                (default: 1).
509
510
            spec : {scalar, list, numpy.ndarray, nifty.field, function},
                *optional*
Marco Selig's avatar
Marco Selig committed
511
512
513
514
515
516
517
                Power spectrum (default: 1).
            pindex : numpy.ndarray, *optional*
                Indexing array giving the power spectrum index of each band
                (default: None).
            kindex : numpy.ndarray, *optional*
                Scale of each band (default: None).
            codomain : nifty.rg_space, *optional*
Ultimanet's avatar
Ultimanet committed
518
                A compatible codomain (default: None).
Marco Selig's avatar
Marco Selig committed
519
            log : bool, *optional*
520
521
                Flag specifying if the spectral binning is performed on
                    logarithmic
Marco Selig's avatar
Marco Selig committed
522
523
524
525
                scale or not; if set, the number of used bins is set
                automatically (if not given otherwise); by default no binning
                is done (default: None).
            nbin : integer, *optional*
526
527
                Number of used spectral bins; if given `log` is set to
                    ``False``;
Marco Selig's avatar
Marco Selig committed
528
529
530
531
532
                integers below the minimum of 3 induce an automatic setting;
                by default no binning is done (default: None).
            binbounds : {list, array}, *optional*
                User specific inner boundaries of the bins, which are preferred
                over the above parameters; by default no binning is done
533
                (default: None).
Ultimanet's avatar
Ultimanet committed
534
            vmin : float, *optional*
Marco Selig's avatar
Marco Selig committed
535
536
537
538
                Lower limit for a uniform distribution (default: 0).
            vmax : float, *optional*
                Upper limit for a uniform distribution (default: 1).
        """
539
        # Parse the keyword arguments
540
        arg = random.parse_arguments(self, **kwargs)
541

542
543
544
        if arg is None:
            return self.cast(0)

Ultima's avatar
Ultima committed
545
546
        # Should the output be hermitianized?
        hermitianizeQ = (self.paradict['complexity'] == 1)
Ultimanet's avatar
Ultimanet committed
547

548
        # Case 1: uniform distribution over {-1,+1}/{1,i,-1,-i}
Ultima's avatar
Ultima committed
549
550
        if arg['random'] == 'pm1' and not hermitianizeQ:
            sample = super(rg_space, self).get_random_values(**arg)
551

Ultima's avatar
Ultima committed
552
        elif arg['random'] == 'pm1' and hermitianizeQ:
553
            sample = self.get_random_values(random='uni', vmin=-1, vmax=1)
Ultima's avatar
Ultima committed
554

555
            if issubclass(sample.dtype.type, np.complexfloating):
Ultima's avatar
Ultima committed
556
557
558
559
560
                temp_data = sample.copy()
                sample[temp_data.real >= 0.5] = 1
                sample[(temp_data.real >= 0) * (temp_data.real < 0.5)] = -1
                sample[(temp_data.real < 0) * (temp_data.imag >= 0)] = 1j
                sample[(temp_data.real < 0) * (temp_data.imag < 0)] = -1j
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
                # Set the mirroring invariant points to real values
                product_list = []
                for s in self.get_shape():
                    # if the particular dimension has even length, set
                    # also the middle of the array to a real value
                    if s % 2 == 0:
                        product_list += [[0, s/2]]
                    else:
                        product_list += [[0]]

                for i in itertools.product(*product_list):
                    sample[i] = {1: 1,
                                 -1: -1,
                                 1j: 1,
                                 -1j: -1}[sample[i]]
Ultimanet's avatar
Ultimanet committed
576
            else:
Ultima's avatar
Ultima committed
577
578
                sample[sample >= 0] = 1
                sample[sample < 0] = -1
579

Ultima's avatar
Ultima committed
580
581
582
583
584
            try:
                sample.hermitian = True
            except(AttributeError):
                pass

585
        # Case 2: normal distribution with zero-mean and a given standard
586
        #         deviation or variance
Ultima's avatar
Ultima committed
587
588
        elif arg['random'] == 'gau':
            sample = super(rg_space, self).get_random_values(**arg)
589

590
            if hermitianizeQ:
Ultima's avatar
Ultima committed
591
                sample = utilities.hermitianize_gaussian(sample)
Ultimanet's avatar
Ultimanet committed
592

593
        # Case 3: uniform distribution
Ultima's avatar
Ultima committed
594
595
        elif arg['random'] == "uni" and not hermitianizeQ:
            sample = super(rg_space, self).get_random_values(**arg)
596

Ultima's avatar
Ultima committed
597
        elif arg['random'] == "uni" and hermitianizeQ:
598
599
600
601
602
            # For a hermitian uniform sample, generate a gaussian one
            # and then convert it to a uniform one
            sample = self.get_random_values(random='gau')
            # Use the cummulative of the gaussian, the error function in order
            # to transform it to a uniform distribution.
603
            if issubclass(sample.dtype.type, np.complexfloating):
Ultima's avatar
Ultima committed
604
                def temp_erf(x):
605
                    return erf(x.real) + 1j * erf(x.imag)
Ultimanet's avatar
Ultimanet committed
606
            else:
Ultima's avatar
Ultima committed
607
                def temp_erf(x):
608
                    return erf(x / np.sqrt(2))
Ultima's avatar
Ultima committed
609

610
            sample.apply_scalar_function(function=temp_erf, inplace=True)
611
612

            # Shift and stretch the uniform distribution into the given limits
613
            # sample = (sample + 1)/2 * (vmax-vmin) + vmin
Ultima's avatar
Ultima committed
614
615
            vmin = arg['vmin']
            vmax = arg['vmax']
616
617
            sample *= (vmax - vmin) / 2.
            sample += 1 / 2. * (vmax + vmin)
Marco Selig's avatar
Marco Selig committed
618

Ultima's avatar
Ultima committed
619
620
621
622
623
            try:
                sample.hermitian = True
            except(AttributeError):
                pass

Ultima's avatar
Ultima committed
624
625
626
627
        elif(arg['random'] == "syn"):
            spec = arg['spec']
            kpack = arg['kpack']
            harmonic_domain = arg['harmonic_domain']
Ultima's avatar
Ultima committed
628
629
630
631
632
            lnb_dict = {}
            for name in ('log', 'nbin', 'binbounds'):
                if arg[name] != 'default':
                    lnb_dict[name] = arg[name]

633
634
635
            # Check whether there is a kpack available or not.
            # kpack is only used for computing kdict and extracting kindex
            # If not, take kdict and kindex from the fourier_domain
636
            if kpack is None:
Ultimanet's avatar
Ultimanet committed
637
                power_indices =\
Ultima's avatar
Ultima committed
638
                    harmonic_domain.power_indices.get_index_dict(**lnb_dict)
639

Ultimanet's avatar
Ultimanet committed
640
641
642
643
644
645
                kindex = power_indices['kindex']
                kdict = power_indices['kdict']
                kpack = [power_indices['pindex'], power_indices['kindex']]
            else:
                kindex = kpack[1]
                kdict = harmonic_domain.power_indices.\
646
647
648
649
650
651
652
653
                    _compute_kdict_from_pindex_kindex(kpack[0], kpack[1])

            # draw the random samples
            # Case 1: self is a harmonic space
            if self.harmonic:
                # subcase 1: self is real
                # -> simply generate a random field in fourier space and
                # weight the entries accordingly to the powerspectrum
Ultimanet's avatar
Ultimanet committed
654
                if self.paradict['complexity'] == 0:
Ultima's avatar
Ultima committed
655
656
657
                    sample = self.get_random_values(random='gau',
                                                    mean=0,
                                                    std=1)
658
659
660
661
662
                # subcase 2: self is hermitian but probably complex
                # -> generate a real field (in position space) and transform
                # it to harmonic space -> field in harmonic space is
                # hermitian. Now weight the modes accordingly to the
                # powerspectrum.
Ultimanet's avatar
Ultimanet committed
663
664
                elif self.paradict['complexity'] == 1:
                    temp_codomain = self.get_codomain()
Ultima's avatar
Ultima committed
665
666
667
                    sample = temp_codomain.get_random_values(random='gau',
                                                             mean=0,
                                                             std=1)
668
669
670
671
672
673

                    # In order to get the normalisation right, the sqrt
                    # of self.dim must be divided out.
                    # Furthermore, the normalisation in the fft routine
                    # must be undone
                    # TODO: Insert explanation
674
                    sqrt_of_dim = np.sqrt(self.get_dim())
Ultimanet's avatar
Ultimanet committed
675
676
677
                    sample /= sqrt_of_dim
                    sample = temp_codomain.calc_weight(sample, power=-1)

678
                    # tronsform the random field to harmonic space
Ultimanet's avatar
Ultimanet committed
679
                    sample = temp_codomain.\
680
681
682
683
                        calc_transform(sample, codomain=self)

                    # ensure that the kdict and the harmonic_sample have the
                    # same distribution strategy
Ultima's avatar
Ultima committed
684
685
686
687
688
                    try:
                        assert(kdict.distribution_strategy ==
                               sample.distribution_strategy)
                    except AttributeError:
                        pass
689
690
691
692

                # subcase 3: self is fully complex
                # -> generate a complex random field in harmonic space and
                # weight the modes accordingly to the powerspectrum
Ultimanet's avatar
Ultimanet committed
693
                elif self.paradict['complexity'] == 2:
Ultima's avatar
Ultima committed
694
695
696
                    sample = self.get_random_values(random='gau',
                                                    mean=0,
                                                    std=1)
697

698
                # apply the powerspectrum renormalization
699
700
701
702
703
704
705
                # extract the local data from kdict
                local_kdict = kdict.get_local_data()
                rescaler = np.sqrt(
                    spec[np.searchsorted(kindex, local_kdict)])
                sample.apply_scalar_function(lambda x: x * rescaler,
                                             inplace=True)

706
            # Case 2: self is a position space
Ultimanet's avatar
Ultimanet committed
707
            else:
708
709
                # get a suitable codomain
                temp_codomain = self.get_codomain()
Ultimanet's avatar
Ultimanet committed
710

711
712
713
                # subcase 1: self is a real space.
                # -> generate a hermitian sample with the codomain in harmonic
                # space and make a fourier transformation.
Ultimanet's avatar
Ultimanet committed
714
                if self.paradict['complexity'] == 0:
715
                    # check that the codomain is hermitian
Ultimanet's avatar
Ultimanet committed
716
                    assert(temp_codomain.paradict['complexity'] == 1)
717
718
719
720

                # subcase 2: self is hermitian but probably complex
                # -> generate a real-valued random sample in fourier space
                # and transform it to real space
Ultimanet's avatar
Ultimanet committed
721
                elif self.paradict['complexity'] == 1:
722
723
                    # check that the codomain is real
                    assert(temp_codomain.paradict['complexity'] == 0)
Ultimanet's avatar
Ultimanet committed
724

725
726
727
728
729
730
                # subcase 3: self is fully complex
                # -> generate a complex-valued random sample in fourier space
                # and transform it to real space
                elif self.paradict['complexity'] == 2:
                    # check that the codomain is real
                    assert(temp_codomain.paradict['complexity'] == 2)
Ultimanet's avatar
Ultimanet committed
731

732
733
                # Get a hermitian/real/complex sample in harmonic space from
                # the codomain
Ultima's avatar
Ultima committed
734
735
736
737
738
                sample = temp_codomain.get_random_values(random='syn',
                                                         pindex=kpack[0],
                                                         kindex=kpack[1],
                                                         spec=spec,
                                                         codomain=self,
Ultima's avatar
Ultima committed
739
                                                         **lnb_dict)
740

741
                # Perform a fourier transform
Ultima's avatar
Ultima committed
742
                sample = temp_codomain.calc_transform(sample, codomain=self)
Ultimanet's avatar
Ultimanet committed
743
744

            if self.paradict['complexity'] == 1:
Ultima's avatar
Ultima committed
745
746
747
748
                try:
                    sample.hermitian = True
                except AttributeError:
                    pass
749

Ultimanet's avatar
Ultimanet committed
750
751
        else:
            raise KeyError(about._errors.cstring(
Ultima's avatar
Ultima committed
752
                "ERROR: unsupported random key '" + str(arg['random']) + "'."))
Marco Selig's avatar
Marco Selig committed
753

754
        return sample
Marco Selig's avatar
Marco Selig committed
755

Ultimanet's avatar
Ultimanet committed
756
    def calc_weight(self, x, power=1):
Marco Selig's avatar
Marco Selig committed
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
        """
            Weights a given array with the pixel volumes to a given power.

            Parameters
            ----------
            x : numpy.ndarray
                Array to be weighted.
            power : float, *optional*
                Power of the pixel volumes to be used (default: 1).

            Returns
            -------
            y : numpy.ndarray
                Weighted array.
        """
772
773
        # weight
        x = x * self.get_weight(power=power)
Ultimanet's avatar
Ultimanet committed
774
        return x
Marco Selig's avatar
Marco Selig committed
775

776
    def get_weight(self, power=1):
777
        return np.prod(self.distances)**power
778

779
    def calc_dot(self, x, y):
Marco Selig's avatar
Marco Selig committed
780
        """
781
782
            Computes the discrete inner product of two given arrays of field
            values.
Marco Selig's avatar
Marco Selig committed
783
784
785
786
787
788
789
790
791
792
793
794
795

            Parameters
            ----------
            x : numpy.ndarray
                First array
            y : numpy.ndarray
                Second array

            Returns
            -------
            dot : scalar
                Inner product of the two arrays.
        """
796
797
        x = self.cast(x)
        y = self.cast(y)
798

799
        result = x.vdot(y)
800

801
        if np.isreal(result):
802
            result = np.asscalar(np.real(result))
Ultimanet's avatar
Ultimanet committed
803
        if self.paradict['complexity'] != 2:
804
805
            if (np.absolute(result.imag) >
                    self.epsilon**2 * np.absolute(result.real)):
Ultimanet's avatar
Ultimanet committed
806
807
                about.warnings.cprint(
                    "WARNING: Discarding considerable imaginary part.")
808
            result = np.asscalar(np.real(result))
809
        return result
Marco Selig's avatar
Marco Selig committed
810

811
    def calc_transform(self, x, codomain=None, **kwargs):
Marco Selig's avatar
Marco Selig committed
812
813
814
815
816
817
818
819
        """
            Computes the transform of a given array of field values.

            Parameters
            ----------
            x : numpy.ndarray
                Array to be transformed.
            codomain : nifty.rg_space, *optional*
820
                codomain space to which the transformation shall map
Marco Selig's avatar
Marco Selig committed
821
822
823
824
825
826
827
                (default: None).

            Returns
            -------
            Tx : numpy.ndarray
                Transformed array
        """
828
        x = self.cast(x)
829

830
        if codomain is None:
Ultimanet's avatar
Ultimanet committed
831
            codomain = self.get_codomain()
832
833

        # Check if the given codomain is suitable for the transformation
834
        if not self.check_codomain(codomain):
835
            raise ValueError(about._errors.cstring(
836
                "ERROR: unsupported codomain."))
837

838
        if codomain.harmonic:
839
            # correct for forward fft
840
            x = self.calc_weight(x, power=1)
841
842
843

        # Perform the transformation
        Tx = self.fft_machine.transform(val=x, domain=self, codomain=codomain,
844
845
                                        **kwargs)

846
        if not codomain.harmonic:
847
            # correct for inverse fft
Ultimanet's avatar
Ultimanet committed
848
849
            Tx = codomain.calc_weight(Tx, power=-1)

850
851
852
        # when the codomain space is purely real, the result of the
        # transformation must be corrected accordingly. Using the casting
        # method of codomain is sufficient
853
        # TODO: Let .transform  yield the correct dtype
854
        Tx = codomain.cast(Tx)
855

856
857
        return Tx

Ultimanet's avatar
Ultimanet committed
858
    def calc_smooth(self, x, sigma=0, codomain=None):
Marco Selig's avatar
Marco Selig committed
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
        """
            Smoothes an array of field values by convolution with a Gaussian
            kernel.

            Parameters
            ----------
            x : numpy.ndarray
                Array of field values to be smoothed.
            sigma : float, *optional*
                Standard deviation of the Gaussian kernel, specified in units
                of length in position space; for testing: a sigma of -1 will be
                reset to a reasonable value (default: 0).

            Returns
            -------
            Gx : numpy.ndarray
                Smoothed array.
        """

878
        # Check sigma
Ultimanet's avatar
Ultimanet committed
879
        if sigma == 0:
Ultima's avatar
Ultima committed
880
            return self.unary_operation(x, op='copy')
Ultimanet's avatar
Ultimanet committed
881
882
883
        elif sigma == -1:
            about.infos.cprint(
                "INFO: Resetting sigma to sqrt(2)*max(dist).")
884
            sigma = np.sqrt(2) * np.max(self.distances)
885
        elif(sigma < 0):
Marco Selig's avatar
Marco Selig committed
886
            raise ValueError(about._errors.cstring("ERROR: invalid sigma."))
Ultimanet's avatar
Ultimanet committed
887

888
        # if a codomain was given...
889
        if codomain is not None:
890
            # ...check if it was suitable
Ultimanet's avatar
Ultimanet committed
891
892
            if not self.check_codomain(codomain):
                raise ValueError(about._errors.cstring(
893
894
                    "ERROR: the given codomain is not a compatible!"))
        else:
Ultimanet's avatar
Ultimanet committed
895
896
            codomain = self.get_codomain()

897
898
899
900
        x = self.calc_transform(x, codomain=codomain)
        x = codomain._calc_smooth_helper(x, sigma)
        x = codomain.calc_transform(x, codomain=self)
        return x
901

902
903
    def _calc_smooth_helper(self, x, sigma):
        # multiply the gaussian kernel, etc...
904
905
906
907
908

        # Cast the input
        x = self.cast(x)

        # if x is hermitian it remains hermitian during smoothing
csongor's avatar
csongor committed
909
910
911
        # TODO look at this later
        # if self.datamodel in RG_DISTRIBUTION_STRATEGIES:
        remeber_hermitianQ = x.hermitian
Ultimanet's avatar
Ultimanet committed
912

913
914
915
916
        # Define the Gaussian kernel function
        gaussian = lambda x: np.exp(-2. * np.pi**2 * x**2 * sigma**2)

        # Define the variables in the dialect of the legacy smoothing.py
917
918
        nx = np.array(self.get_shape())
        dx = 1 / nx / self.distances
919
        # Multiply the data along each axis with suitable the gaussian kernel
Ultimanet's avatar
Ultimanet committed
920
        for i in range(len(nx)):
921
922
            # Prepare the exponent
            dk = 1. / nx[i] / dx[i]
Ultimanet's avatar
Ultimanet committed
923
            nk = nx[i]
924
            k = -0.5 * nk * dk + np.arange(nk) * dk
Ultimanet's avatar
Ultimanet committed
925
926
            if self.paradict['zerocenter'][i] == False:
                k = np.fft.fftshift(k)
927
            # compute the actual kernel vector
Ultimanet's avatar
Ultimanet committed
928
            gaussian_kernel_vector = gaussian(k)
929
930
            # blow up the vector to an array of shape (1,.,1,len(nk),1,.,1)
            blown_up_shape = [1, ] * len(nx)
Ultimanet's avatar
Ultimanet committed
931
932
933
            blown_up_shape[i] = len(gaussian_kernel_vector)
            gaussian_kernel_vector =\
                gaussian_kernel_vector.reshape(blown_up_shape)
934
935
            # apply the blown-up gaussian_kernel_vector
            x = x*gaussian_kernel_vector
936

937
        try:
938
            x.hermitian = remeber_hermitianQ
939
940
        except AttributeError:
            pass
941

Ultimanet's avatar
Ultimanet committed
942
        return x
Marco Selig's avatar
Marco Selig committed
943

944
    def calc_power(self, x, **kwargs):
Marco Selig's avatar
Marco Selig committed
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
        """
            Computes the power of an array of field values.

            Parameters
            ----------
            x : numpy.ndarray
                Array containing the field values of which the power is to be
                calculated.

            Returns
            -------
            spec : numpy.ndarray
                Power contained in the input array.

            Other parameters
            ----------------
            pindex : numpy.ndarray, *optional*
                Indexing array assigning the input array components to
                components of the power spectrum (default: None).
            rho : numpy.ndarray, *optional*
                Number of degrees of freedom per band (default: None).
            codomain : nifty.space, *optional*
                A compatible codomain for power indexing (default: None).
            log : bool, *optional*
969
970
                Flag specifying if the spectral binning is performed on
                logarithmic
Marco Selig's avatar
Marco Selig committed
971
972
973
974
                scale or not; if set, the number of used bins is set
                automatically (if not given otherwise); by default no binning
                is done (default: None).
            nbin : integer, *optional*
975
976
                Number of used spectral bins; if given `log` is set to
                ``False``;
Marco Selig's avatar
Marco Selig committed
977
978
979
980
981
                integers below the minimum of 3 induce an automatic setting;
                by default no binning is done (default: None).
            binbounds : {list, array}, *optional*
                User specific inner boundaries of the bins, which are preferred
                over the above parameters; by default no binning is done
982
                (default: None).
Marco Selig's avatar
Marco Selig committed
983
984

        """
Ultimanet's avatar
Ultimanet committed
985
986
        x = self.cast(x)

987
        # If self is a position space, delegate calc_power to its codomain.
988
        if not self.harmonic:
Marco Selig's avatar
Marco Selig committed
989
            try:
990
                codomain = kwargs['codomain']
Ultimanet's avatar
Ultimanet committed
991
992
            except(KeyError):
                codomain = self.get_codomain()
993

Ultimanet's avatar
Ultimanet committed
994
995
996
            y = self.calc_transform(x, codomain)
            kwargs.update({'codomain': self})
            return codomain.calc_power(y, **kwargs)
997
998
999
1000
1001

        # If some of the pindex, kindex or rho arrays are given explicitly,
        # favor them over those from the self.power_indices dictionary.
        # As the default value in kwargs.get(key, default) does NOT evaluate
        # lazy, a distinction of cases is necessary. Otherwise the
Ultima's avatar
Ultima committed
1002
1003
        # powerindices might be computed, although not needed
        if 'pindex' in kwargs and 'rho' in kwargs:
Ultimanet's avatar
Ultimanet committed
1004
1005
1006
            pindex = kwargs.get('pindex')
            rho = kwargs.get('rho')
        else:
Ultima's avatar
Ultima committed
1007
            power_indices = self.power_indices.get_index_dict(**kwargs)
Ultimanet's avatar
Ultimanet committed
1008
1009
            pindex = kwargs.get('pindex', power_indices['pindex'])
            rho = kwargs.get('rho', power_indices['rho'])
1010

Ultimanet's avatar
Ultimanet committed
1011
        fieldabs = abs(x)**2
1012
        power_spectrum = np.zeros(rho.shape)
1013

1014
        power_spectrum = pindex.bincount(weights=fieldabs)
1015
1016

        # Divide out the degeneracy factor
Ultimanet's avatar
Ultimanet committed
1017
1018
        power_spectrum /= rho
        return power_spectrum
Marco Selig's avatar
Marco Selig committed
1019

Ultima's avatar
Ultima committed
1020
1021
    def get_plot(self,x,title="",vmin=None,vmax=None,power=None,unit="",
                 norm=None,cmap=None,cbar=True,other=None,legend=False,mono=True,**kwargs):
Marco Selig's avatar
Marco Selig committed
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046