energy_operators.py 6.28 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
14
# Copyright(C) 2013-2019 Max-Planck-Society
Martin Reinecke's avatar
Martin Reinecke committed
15
#
16
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
Martin Reinecke's avatar
Martin Reinecke committed
17

Philipp Arras's avatar
Philipp Arras committed
18
from .. import utilities
Martin Reinecke's avatar
Martin Reinecke committed
19
from ..domain_tuple import DomainTuple
Philipp Arras's avatar
Philipp Arras committed
20
21
from ..field import Field
from ..linearization import Linearization
Martin Reinecke's avatar
Martin Reinecke committed
22
from ..sugar import makeOp, makeDomain
Martin Reinecke's avatar
Martin Reinecke committed
23
from .operator import Operator
Martin Reinecke's avatar
fix    
Martin Reinecke committed
24
from .sampling_enabler import SamplingEnabler
Philipp Arras's avatar
Philipp Arras committed
25
from .sandwich_operator import SandwichOperator
Martin Reinecke's avatar
Martin Reinecke committed
26
from .simple_linear_operators import VdotOperator
Martin Reinecke's avatar
Martin Reinecke committed
27
28
29
30
31
32
33
34
35
36
37


class EnergyOperator(Operator):
    _target = DomainTuple.scalar_domain()


class SquaredNormOperator(EnergyOperator):
    def __init__(self, domain):
        self._domain = domain

    def apply(self, x):
38
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
39
        if isinstance(x, Linearization):
Martin Reinecke's avatar
Martin Reinecke committed
40
            val = Field.scalar(x.val.vdot(x.val))
Martin Reinecke's avatar
Martin Reinecke committed
41
            jac = VdotOperator(2*x.val)(x.jac)
42
            return x.new(val, jac)
Martin Reinecke's avatar
Martin Reinecke committed
43
        return Field.scalar(x.vdot(x))
Martin Reinecke's avatar
Martin Reinecke committed
44
45
46
47
48
49
50
51


class QuadraticFormOperator(EnergyOperator):
    def __init__(self, op):
        from .endomorphic_operator import EndomorphicOperator
        if not isinstance(op, EndomorphicOperator):
            raise TypeError("op must be an EndomorphicOperator")
        self._op = op
Martin Reinecke's avatar
Martin Reinecke committed
52
        self._domain = op.domain
Martin Reinecke's avatar
Martin Reinecke committed
53
54

    def apply(self, x):
55
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
56
        if isinstance(x, Linearization):
Martin Reinecke's avatar
Martin Reinecke committed
57
58
            t1 = self._op(x.val)
            jac = VdotOperator(t1)(x.jac)
Martin Reinecke's avatar
Martin Reinecke committed
59
            val = Field.scalar(0.5*x.val.vdot(t1))
60
            return x.new(val, jac)
Martin Reinecke's avatar
Martin Reinecke committed
61
        return Field.scalar(0.5*x.vdot(self._op(x)))
Martin Reinecke's avatar
Martin Reinecke committed
62
63
64
65
66
67
68
69
70
71
72
73
74
75


class GaussianEnergy(EnergyOperator):
    def __init__(self, mean=None, covariance=None, domain=None):
        self._domain = None
        if mean is not None:
            self._checkEquivalence(mean.domain)
        if covariance is not None:
            self._checkEquivalence(covariance.domain)
        if domain is not None:
            self._checkEquivalence(domain)
        if self._domain is None:
            raise ValueError("no domain given")
        self._mean = mean
Martin Reinecke's avatar
Martin Reinecke committed
76
77
78
79
        if covariance is None:
            self._op = SquaredNormOperator(self._domain).scale(0.5)
        else:
            self._op = QuadraticFormOperator(covariance.inverse)
Martin Reinecke's avatar
Martin Reinecke committed
80
81
82
        self._icov = None if covariance is None else covariance.inverse

    def _checkEquivalence(self, newdom):
Martin Reinecke's avatar
fix    
Martin Reinecke committed
83
        newdom = makeDomain(newdom)
Martin Reinecke's avatar
Martin Reinecke committed
84
        if self._domain is None:
Philipp Arras's avatar
Philipp Arras committed
85
            self._domain = newdom
Martin Reinecke's avatar
Martin Reinecke committed
86
        else:
Philipp Arras's avatar
Philipp Arras committed
87
            if self._domain != newdom:
Martin Reinecke's avatar
Martin Reinecke committed
88
89
90
                raise ValueError("domain mismatch")

    def apply(self, x):
91
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
92
        residual = x if self._mean is None else x-self._mean
Philipp Arras's avatar
Changes    
Philipp Arras committed
93
        res = self._op(residual).real
94
        if not isinstance(x, Linearization) or not x.want_metric:
Martin Reinecke's avatar
Martin Reinecke committed
95
96
97
98
99
100
            return res
        metric = SandwichOperator.make(x.jac, self._icov)
        return res.add_metric(metric)


class PoissonianEnergy(EnergyOperator):
101
102
103
    def __init__(self, d):
        self._d = d
        self._domain = DomainTuple.make(d.domain)
Martin Reinecke's avatar
Martin Reinecke committed
104
105

    def apply(self, x):
106
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
107
108
        res = x.sum() - x.log().vdot(self._d)
        if not isinstance(x, Linearization):
Martin Reinecke's avatar
Martin Reinecke committed
109
            return Field.scalar(res)
110
111
        if not x.want_metric:
            return res
Martin Reinecke's avatar
Martin Reinecke committed
112
113
114
        metric = SandwichOperator.make(x.jac, makeOp(1./x.val))
        return res.add_metric(metric)

115

116
class InverseGammaLikelihood(EnergyOperator):
117
118
119
    def __init__(self, d):
        self._d = d
        self._domain = DomainTuple.make(d.domain)
120
121

    def apply(self, x):
122
        self._check_input(x)
Philipp Frank's avatar
Philipp Frank committed
123
        res = 0.5*(x.log().sum() + (1./x).vdot(self._d))
124
125
        if not isinstance(x, Linearization):
            return Field.scalar(res)
126
127
        if not x.want_metric:
            return res
128
129
130
131
        metric = SandwichOperator.make(x.jac, makeOp(0.5/(x.val**2)))
        return res.add_metric(metric)


Martin Reinecke's avatar
Martin Reinecke committed
132
class BernoulliEnergy(EnergyOperator):
133
    def __init__(self, d):
Martin Reinecke's avatar
Martin Reinecke committed
134
        self._d = d
135
        self._domain = DomainTuple.make(d.domain)
Martin Reinecke's avatar
Martin Reinecke committed
136
137

    def apply(self, x):
138
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
139
140
        v = x.log().vdot(-self._d) - (1.-x).log().vdot(1.-self._d)
        if not isinstance(x, Linearization):
Martin Reinecke's avatar
Martin Reinecke committed
141
            return Field.scalar(v)
142
143
        if not x.want_metric:
            return v
Martin Reinecke's avatar
Martin Reinecke committed
144
145
146
147
148
149
150
151
152
153
        met = makeOp(1./(x.val*(1.-x.val)))
        met = SandwichOperator.make(x.jac, met)
        return v.add_metric(met)


class Hamiltonian(EnergyOperator):
    def __init__(self, lh, ic_samp=None):
        self._lh = lh
        self._prior = GaussianEnergy(domain=lh.domain)
        self._ic_samp = ic_samp
Martin Reinecke's avatar
Martin Reinecke committed
154
        self._domain = lh.domain
Martin Reinecke's avatar
Martin Reinecke committed
155
156

    def apply(self, x):
157
        self._check_input(x)
158
159
        if (self._ic_samp is None or not isinstance(x, Linearization) or
                not x.want_metric):
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
160
            return self._lh(x)+self._prior(x)
Martin Reinecke's avatar
Martin Reinecke committed
161
        else:
162
            lhx, prx = self._lh(x), self._prior(x)
Martin Reinecke's avatar
Martin Reinecke committed
163
164
165
166
            mtr = SamplingEnabler(lhx.metric, prx.metric.inverse,
                                  self._ic_samp, prx.metric.inverse)
            return (lhx+prx).add_metric(mtr)

Philipp Arras's avatar
Philipp Arras committed
167
168
169
170
171
    def __repr__(self):
        subs = 'Likelihood:\n{}'.format(utilities.indent(self._lh.__repr__()))
        subs += '\nPrior: Quadratic{}'.format(self._lh.domain.keys())
        return 'Hamiltonian:\n' + utilities.indent(subs)

Martin Reinecke's avatar
Martin Reinecke committed
172
173
174
175
176
177
178
179
180

class SampledKullbachLeiblerDivergence(EnergyOperator):
    def __init__(self, h, res_samples):
        """
        # MR FIXME: does h have to be a Hamiltonian? Couldn't it be any energy?
        h: Hamiltonian
        N: Number of samples to be used
        """
        self._h = h
Martin Reinecke's avatar
Martin Reinecke committed
181
        self._domain = h.domain
Martin Reinecke's avatar
Martin Reinecke committed
182
183
184
        self._res_samples = tuple(res_samples)

    def apply(self, x):
185
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
186
187
        mymap = map(lambda v: self._h(x+v), self._res_samples)
        return utilities.my_sum(mymap) * (1./len(self._res_samples))