diagonal_operator.py 6.79 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
#
14
# Copyright(C) 2013-2018 Max-Planck-Society
Theo Steininger's avatar
Theo Steininger committed
15
16
17
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
18

19
from __future__ import absolute_import, division, print_function
20

21
import numpy as np
22
23
24

from .. import dobj, utilities
from ..compat import *
Martin Reinecke's avatar
Martin Reinecke committed
25
from ..domain_tuple import DomainTuple
26
from ..field import Field
Martin Reinecke's avatar
Martin Reinecke committed
27
from .endomorphic_operator import EndomorphicOperator
Martin Reinecke's avatar
Martin Reinecke committed
28

29
30

class DiagonalOperator(EndomorphicOperator):
Martin Reinecke's avatar
Martin Reinecke committed
31
    """ NIFTy class for diagonal operators.
Theo Steininger's avatar
Theo Steininger committed
32

Martin Reinecke's avatar
Martin Reinecke committed
33
    The NIFTy DiagonalOperator class is a subclass derived from the
Theo Steininger's avatar
Theo Steininger committed
34
35
    EndomorphicOperator. It multiplies an input field pixel-wise with its
    diagonal.
36

37
38
    Parameters
    ----------
Martin Reinecke's avatar
Martin Reinecke committed
39
    diagonal : Field
Martin Reinecke's avatar
docs    
Martin Reinecke committed
40
41
        The diagonal entries of the operator.
    domain : Domain, tuple of Domain or DomainTuple, optional
42
43
        The domain on which the Operator's input Field lives.
        If None, use the domain of "diagonal".
Martin Reinecke's avatar
docs    
Martin Reinecke committed
44
    spaces : int or tuple of int, optional
45
46
        The elements of "domain" on which the operator acts.
        If None, it acts on all elements.
Martin Reinecke's avatar
Martin Reinecke committed
47
48
49
50
51
52
53
54
55
56

    Notes
    -----
    Formally, this operator always supports all operation modes (times,
    adjoint_times, inverse_times and inverse_adjoint_times), even if there
    are diagonal elements with value 0 or infinity. It is the user's
    responsibility to apply the operator only in appropriate ways (e.g. call
    inverse_times only if there are no zeros on the diagonal).

    This shortcoming will hopefully be fixed in the future.
57
58
    """

Martin Reinecke's avatar
Martin Reinecke committed
59
    def __init__(self, diagonal, domain=None, spaces=None):
60
        super(DiagonalOperator, self).__init__()
61

Martin Reinecke's avatar
Martin Reinecke committed
62
63
        if not isinstance(diagonal, Field):
            raise TypeError("Field object required")
64
65
66
67
68
69
        if domain is None:
            self._domain = diagonal.domain
        else:
            self._domain = DomainTuple.make(domain)
        if spaces is None:
            self._spaces = None
70
            if diagonal.domain is not self._domain:
71
72
                raise ValueError("domain mismatch")
        else:
73
74
            self._spaces = utilities.parse_spaces(spaces, len(self._domain))
            if len(self._spaces) != len(diagonal.domain):
75
                raise ValueError("spaces and domain must have the same length")
Martin Reinecke's avatar
Martin Reinecke committed
76
            for i, j in enumerate(self._spaces):
77
78
                if diagonal.domain[i] != self._domain[j]:
                    raise ValueError("domain mismatch")
Martin Reinecke's avatar
Martin Reinecke committed
79
            if self._spaces == tuple(range(len(self._domain))):
Martin Reinecke's avatar
tweak    
Martin Reinecke committed
80
81
82
83
84
85
86
                self._spaces = None  # shortcut

        if self._spaces is not None:
            active_axes = []
            for space_index in self._spaces:
                active_axes += self._domain.axes[space_index]

Martin Reinecke's avatar
Martin Reinecke committed
87
            if self._spaces[0] == 0:
Martin Reinecke's avatar
Martin Reinecke committed
88
                self._ldiag = diagonal.local_data
Martin Reinecke's avatar
Martin Reinecke committed
89
            else:
Martin Reinecke's avatar
Martin Reinecke committed
90
                self._ldiag = diagonal.to_global_data()
Martin Reinecke's avatar
Martin Reinecke committed
91
            locshape = dobj.local_shape(self._domain.shape, 0)
Martin Reinecke's avatar
tweak    
Martin Reinecke committed
92
            self._reshaper = [shp if i in active_axes else 1
Martin Reinecke's avatar
Martin Reinecke committed
93
94
95
                              for i, shp in enumerate(locshape)]
            self._ldiag = self._ldiag.reshape(self._reshaper)
        else:
Martin Reinecke's avatar
Martin Reinecke committed
96
            self._ldiag = diagonal.local_data
97
        self._fill_rest()
98

99
    def _fill_rest(self):
Martin Reinecke's avatar
Martin Reinecke committed
100
        self._ldiag.flags.writeable = False
Martin Reinecke's avatar
Martin Reinecke committed
101
        self._complex = utilities.iscomplextype(self._ldiag.dtype)
102
        if not self._complex:
103
104
            lmin = self._ldiag.min() if self._ldiag.size > 0 else 1.
            self._diagmin = dobj.np_allreduce_min(np.array(lmin))[()]
Martin Reinecke's avatar
Martin Reinecke committed
105

106
    def _from_ldiag(self, spc, ldiag):
Martin Reinecke's avatar
Martin Reinecke committed
107
108
109
110
111
112
        res = DiagonalOperator.__new__(DiagonalOperator)
        res._domain = self._domain
        if self._spaces is None or spc is None:
            res._spaces = None
        else:
            res._spaces = tuple(set(self._spaces) | set(spc))
113
        res._ldiag = ldiag
114
        res._fill_rest()
Martin Reinecke's avatar
Martin Reinecke committed
115
116
117
118
119
        return res

    def _scale(self, fct):
        if not np.isscalar(fct):
            raise TypeError("scalar value required")
120
        return self._from_ldiag((), self._ldiag*fct)
Martin Reinecke's avatar
Martin Reinecke committed
121
122
123
124

    def _add(self, sum):
        if not np.isscalar(sum):
            raise TypeError("scalar value required")
125
        return self._from_ldiag((), self._ldiag+sum)
Martin Reinecke's avatar
Martin Reinecke committed
126
127
128
129

    def _combine_prod(self, op):
        if not isinstance(op, DiagonalOperator):
            raise TypeError("DiagonalOperator required")
130
        return self._from_ldiag(op._spaces, self._ldiag*op._ldiag)
Martin Reinecke's avatar
Martin Reinecke committed
131
132
133
134

    def _combine_sum(self, op, selfneg, opneg):
        if not isinstance(op, DiagonalOperator):
            raise TypeError("DiagonalOperator required")
135
136
137
        tdiag = (self._ldiag * (-1 if selfneg else 1) +
                 op._ldiag * (-1 if opneg else 1))
        return self._from_ldiag(op._spaces, tdiag)
138

Martin Reinecke's avatar
Martin Reinecke committed
139
140
    def apply(self, x, mode):
        self._check_input(x, mode)
141
142
        # shortcut for most common cases
        if mode == 1 or (not self._complex and mode == 2):
143
            return Field.from_local_data(x.domain, x.local_data*self._ldiag)
144
145
146
147
148
149

        xdiag = self._ldiag
        if self._complex and (mode & 10):  # adjoint or inverse adjoint
            xdiag = xdiag.conj()

        if mode & 3:
150
151
            return Field.from_local_data(x.domain, x.local_data*xdiag)
        return Field.from_local_data(x.domain, x.local_data/xdiag)
152
153

    @property
Martin Reinecke's avatar
Martin Reinecke committed
154
    def capability(self):
Martin Reinecke's avatar
Martin Reinecke committed
155
156
        return self._all_ops

157
    def _flip_modes(self, trafo):
158
159
160
161
162
163
        xdiag = self._ldiag
        if self._complex and (trafo & self.ADJOINT_BIT):
            xdiag = xdiag.conj()
        if trafo & self.INVERSE_BIT:
            xdiag = 1./xdiag
        return self._from_ldiag((), xdiag)
164

165
    def draw_sample(self, from_inverse=False, dtype=np.float64):
166
        if self._complex:
clienhar's avatar
clienhar committed
167
            raise ValueError("operator not positive definite")
168
169
170
171
        if self._diagmin < 0.:
            raise ValueError("operator not positive definite")
        if self._diagmin == 0. and from_inverse:
            raise ValueError("operator not positive definite")
172
173
        res = Field.from_random(random_type="normal", domain=self._domain,
                                dtype=dtype)
174
        if from_inverse:
175
            res = res.local_data/np.sqrt(self._ldiag)
176
        else:
177
178
            res = res.local_data*np.sqrt(self._ldiag)
        return Field.from_local_data(self._domain, res)