test_correlated_fields.py 4.45 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
Philipp Arras's avatar
Philipp Arras committed
14
# Copyright(C) 2013-2020 Max-Planck-Society
15
16
17
18
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.

import pytest
Philipp Arras's avatar
Philipp Arras committed
19
from numpy.testing import assert_, assert_allclose
20

Martin Reinecke's avatar
5->6    
Martin Reinecke committed
21
import nifty6 as ift
Philipp Arras's avatar
Philipp Arras committed
22

23
from ..common import setup_function, teardown_function
24

Philipp Arras's avatar
Philipp Arras committed
25
pmp = pytest.mark.parametrize
26

Philipp Arras's avatar
Philipp Arras committed
27

Philipp Arras's avatar
Philipp Arras committed
28
29
30
31
32
33
def _stats(op, samples):
    sc = ift.StatCalculator()
    for s in samples:
        sc.add(op(s.extract(op.domain)))
    return sc.mean.val, sc.var.ptw("sqrt").val

Philipp Arras's avatar
Philipp Arras committed
34

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
@pmp('dofdex', [[0, 0], [0, 1]])
@pmp('seed', [12, 3])
def testDistributor(dofdex, seed):
    with ift.random.Context(seed):
        dom = ift.RGSpace(3)
        N_copies = max(dofdex) + 1
        distributed_target = ift.makeDomain(
            (ift.UnstructuredDomain(len(dofdex)), dom))
        target = ift.makeDomain((ift.UnstructuredDomain(N_copies), dom))
        op = ift.library.correlated_fields._Distributor(
            dofdex, target, distributed_target)
        ift.extra.consistency_check(op)


@pmp('sspace', [
    ift.RGSpace(4),
    ift.RGSpace((4, 4), (0.123, 0.4)),
    ift.HPSpace(8),
    ift.GLSpace(4)
])
Philipp Arras's avatar
Philipp Arras committed
55
@pmp('N', [0, 2])
Philipp Arras's avatar
Philipp Arras committed
56
def testAmplitudesInvariants(sspace, N):
57
    fsspace = ift.RGSpace((12,), (0.4,))
Philipp Arras's avatar
Philipp Arras committed
58
    dofdex1, dofdex2, dofdex3 = None, None, None
59
    if N == 2:
Philipp Arras's avatar
Philipp Arras committed
60
        dofdex1, dofdex2, dofdex3 = [0, 0], [1, 0], [1, 1]
61

62
63
64
65
66
67
68
69
70
    astds = 0.2, 1.2
    offset_std_mean = 1.3
    fa = ift.CorrelatedFieldMaker.make(1.2, offset_std_mean, 1e-2, '', N,
                                       dofdex1)
    fa.add_fluctuations(sspace, astds[0], 1e-2, 1.1, 2., 2.1, .5, -2, 1.,
                        'spatial', dofdex=dofdex2)
    fa.add_fluctuations(fsspace, astds[1], 1e-2, 3.1, 1., .5, .1, -4, 1.,
                        'freq', dofdex=dofdex3)
    op = fa.finalize()
71

Philipp Arras's avatar
Philipp Arras committed
72
    samples = [ift.from_random(op.domain) for _ in range(100)]
Philipp Arras's avatar
Philipp Arras committed
73
74
75
76
    tot_flm, _ = _stats(fa.total_fluctuation, samples)
    offset_amp_std, _ = _stats(fa.amplitude_total_offset, samples)
    intergated_fluct_std0, _ = _stats(fa.average_fluctuation(0), samples)
    intergated_fluct_std1, _ = _stats(fa.average_fluctuation(1), samples)
77

Philipp Arras's avatar
Philipp Arras committed
78
79
    slice_fluct_std0, _ = _stats(fa.slice_fluctuation(0), samples)
    slice_fluct_std1, _ = _stats(fa.slice_fluctuation(1), samples)
Martin Reinecke's avatar
stage 3    
Martin Reinecke committed
80

81
82
83
84
85
86
87
    sams = [op(s) for s in samples]
    fluct_total = fa.total_fluctuation_realized(sams)
    fluct_space = fa.average_fluctuation_realized(sams, 0)
    fluct_freq = fa.average_fluctuation_realized(sams, 1)
    zm_std_mean = fa.offset_amplitude_realized(sams)
    sl_fluct_space = fa.slice_fluctuation_realized(sams, 0)
    sl_fluct_freq = fa.slice_fluctuation_realized(sams, 1)
88

89
90
91
92
93
94
    assert_allclose(offset_amp_std, zm_std_mean, rtol=0.5)
    assert_allclose(intergated_fluct_std0, fluct_space, rtol=0.5)
    assert_allclose(intergated_fluct_std1, fluct_freq, rtol=0.5)
    assert_allclose(tot_flm, fluct_total, rtol=0.5)
    assert_allclose(slice_fluct_std0, sl_fluct_space, rtol=0.5)
    assert_allclose(slice_fluct_std1, sl_fluct_freq, rtol=0.5)
95

96
    fa = ift.CorrelatedFieldMaker.make(0., offset_std_mean, .1, '', N, dofdex1)
Philipp Arras's avatar
Philipp Arras committed
97
98
    fa.add_fluctuations(fsspace, astds[1], 1., 3.1, 1., .5, .1, -4, 1., 'freq',
                        dofdex=dofdex3)
99
100
    m = 3.
    x = fa.moment_slice_to_average(m)
Philipp Arras's avatar
Philipp Arras committed
101
102
    fa.add_fluctuations(sspace, x, 1.5, 1.1, 2., 2.1, .5, -2, 1., 'spatial', 0,
                        dofdex=dofdex2)
103
    op = fa.finalize()
Philipp Arras's avatar
Philipp Arras committed
104
    em, estd = _stats(fa.slice_fluctuation(0), samples)
105

106
    assert_allclose(m, em, rtol=0.5)
Philipp Arras's avatar
Philipp Arras committed
107
108
    assert_(op.target[-2] == sspace)
    assert_(op.target[-1] == fsspace)
Philipp Arras's avatar
Philipp Arras committed
109
110

    for ampl in fa.normalized_amplitudes:
111
112
        ift.extra.check_jacobian_consistency(ampl,
                                             ift.from_random(ampl.domain),
Philipp Arras's avatar
Philipp Arras committed
113
                                             ntries=10)
114
115
    ift.extra.check_jacobian_consistency(op,
                                         ift.from_random(op.domain),
Philipp Arras's avatar
Philipp Arras committed
116
                                         ntries=10)