rg_space.py 12.2 KB
Newer Older
1
2
3
4
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
5
#
6
7
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
8
9
10
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
11
# You should have received a copy of the GNU General Public License
12
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
14
15
16
17
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
Marco Selig's avatar
Marco Selig committed
18
19
20
21
22
23
24
25
26
27

"""
    ..                  __   ____   __
    ..                /__/ /   _/ /  /_
    ..      __ ___    __  /  /_  /   _/  __   __
    ..    /   _   | /  / /   _/ /  /   /  / /  /
    ..   /  / /  / /  / /  /   /  /_  /  /_/  /
    ..  /__/ /__/ /__/ /__/    \___/  \___   /  rg
    ..                               /______/

Marco Selig's avatar
Marco Selig committed
28
    NIFTY submodule for regular Cartesian grids.
Marco Selig's avatar
Marco Selig committed
29
30
31

"""
from __future__ import division
Martin Reinecke's avatar
Martin Reinecke committed
32
from builtins import range
Ultimanet's avatar
Ultimanet committed
33

Marco Selig's avatar
Marco Selig committed
34
import numpy as np
Ultimanet's avatar
Ultimanet committed
35

36
37
from d2o import distributed_data_object,\
                STRATEGIES as DISTRIBUTION_STRATEGIES
38

Martin Reinecke's avatar
Martin Reinecke committed
39
from ..space import Space
Martin Reinecke's avatar
Martin Reinecke committed
40
from functools import reduce
csongor's avatar
csongor committed
41

Marco Selig's avatar
Marco Selig committed
42

Theo Steininger's avatar
Theo Steininger committed
43
class RGSpace(Space):
Marco Selig's avatar
Marco Selig committed
44
45
46
47
48
49
50
51
52
    """
        ..      _____   _______
        ..    /   __/ /   _   /
        ..   /  /    /  /_/  /
        ..  /__/     \____  /  space class
        ..          /______/

        NIFTY subclass for spaces of regular Cartesian grids.

Theo Steininger's avatar
Theo Steininger committed
53
54
55
56
        Parameters
        ----------
        shape : {int, numpy.ndarray}
            Number of grid points or numbers of gridpoints along each axis.
57
58
59
60
        zerocenter : {bool, numpy.ndarray} *optional*
            Whether x==0 (or k==0, respectively) is located in the center of
            the grid (or the center of each axis speparately) or not.
            (default: False).
Theo Steininger's avatar
Theo Steininger committed
61
62
63
64
65
66
67
68
69
70
        distances : {float, numpy.ndarray}, *optional*
            Distance between two grid points along each axis
            (default: None).
            If distances==None:
                if harmonic==True, all distances will be set to 1
                if harmonic==False, the distance along each axis will be
                  set to the inverse of the number of points along that
                  axis.
        harmonic : bool, *optional*
        Whether the space represents a grid in position or harmonic space.
Theo Steininger's avatar
Theo Steininger committed
71
            (default: False).
Marco Selig's avatar
Marco Selig committed
72
73
74

        Attributes
        ----------
Martin Reinecke's avatar
Martin Reinecke committed
75
        harmonic : bool
Theo Steininger's avatar
Theo Steininger committed
76
77
78
79
80
            Whether or not the grid represents a position or harmonic space.
        zerocenter : tuple of bool
            Whether x==0 (or k==0, respectively) is located in the center of
            the grid (or the center of each axis speparately) or not.
        distances : tuple of floats
81
82
83
84
85
86
87
88
89
            Distance between two grid points along the correponding axis.
        dim : np.int
            Total number of dimensionality, i.e. the number of pixels.
        harmonic : bool
            Specifies whether the space is a signal or harmonic space.
        total_volume : np.float
            The total volume of the space.
        shape : tuple of np.ints
            The shape of the space's data array.
Theo Steininger's avatar
Theo Steininger committed
90

Marco Selig's avatar
Marco Selig committed
91
92
    """

93
94
    # ---Overwritten properties and methods---

95
    def __init__(self, shape, zerocenter=False, distances=None,
Martin Reinecke's avatar
Martin Reinecke committed
96
                 harmonic=False):
97
98
        self._harmonic = bool(harmonic)

Martin Reinecke's avatar
Martin Reinecke committed
99
        super(RGSpace, self).__init__()
100

101
102
103
        self._shape = self._parse_shape(shape)
        self._distances = self._parse_distances(distances)
        self._zerocenter = self._parse_zerocenter(zerocenter)
Marco Selig's avatar
Marco Selig committed
104

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
# This code is unused but may be useful to keep around if it is ever needed
# again in the future ...

#    def hermitian_fixed_points(self):
#        dimensions = len(self.shape)
#        mid_index = np.array(self.shape)//2
#        ndlist = [1]*dimensions
#        for k in range(dimensions):
#            if self.shape[k] % 2 == 0:
#                ndlist[k] = 2
#        ndlist = tuple(ndlist)
#        fixed_points = []
#        for index in np.ndindex(ndlist):
#            for k in range(dimensions):
#                if self.shape[k] % 2 != 0 and self.zerocenter[k]:
#                    index = list(index)
#                    index[k] = 1
#                    index = tuple(index)
#            fixed_points += [tuple(index * mid_index)]
#        return fixed_points
125

126
    def hermitianize_inverter(self, x, axes):
127
        # calculate the number of dimensions the input array has
Martin Reinecke's avatar
Martin Reinecke committed
128
        dimensions = len(x.shape)
129
130
131
132
133
134
        # prepare the slicing object which will be used for mirroring
        slice_primitive = [slice(None), ] * dimensions
        # copy the input data
        y = x.copy()

        # flip in the desired directions
Martin Reinecke's avatar
Martin Reinecke committed
135
136
        for k in range(len(axes)):
            i = axes[k]
137
138
            slice_picker = slice_primitive[:]
            slice_inverter = slice_primitive[:]
Martin Reinecke's avatar
Martin Reinecke committed
139
            if (not self.zerocenter[k]) or self.shape[k] % 2 == 0:
Martin Reinecke's avatar
Martin Reinecke committed
140
                slice_picker[i] = slice(1, None, None)
141
142
                slice_inverter[i] = slice(None, 0, -1)
            else:
Martin Reinecke's avatar
Martin Reinecke committed
143
                slice_picker[i] = slice(None)
144
                slice_inverter[i] = slice(None, None, -1)
Martin Reinecke's avatar
Martin Reinecke committed
145
            slice_picker = tuple(slice_picker)
146
147
148
149
150
151
152
153
154
            slice_inverter = tuple(slice_inverter)

            try:
                y.set_data(to_key=slice_picker, data=y,
                           from_key=slice_inverter)
            except(AttributeError):
                y[slice_picker] = y[slice_inverter]
        return y

155
156
    # ---Mandatory properties and methods---

157
158
159
160
    def __repr__(self):
        return ("RGSpace(shape=%r, zerocenter=%r, distances=%r, harmonic=%r)"
                % (self.shape, self.zerocenter, self.distances, self.harmonic))

161
162
163
164
165
166
167
168
169
170
    @property
    def harmonic(self):
        return self._harmonic

    @property
    def shape(self):
        return self._shape

    @property
    def dim(self):
Martin Reinecke's avatar
Martin Reinecke committed
171
        return int(reduce(lambda x, y: x*y, self.shape))
172
173
174
175
176
177
178
179
180

    @property
    def total_volume(self):
        return self.dim * reduce(lambda x, y: x*y, self.distances)

    def copy(self):
        return self.__class__(shape=self.shape,
                              zerocenter=self.zerocenter,
                              distances=self.distances,
Martin Reinecke's avatar
Martin Reinecke committed
181
                              harmonic=self.harmonic)
182
183

    def weight(self, x, power=1, axes=None, inplace=False):
184
        weight = reduce(lambda x, y: x*y, self.distances) ** np.float(power)
185
186
187
188
189
190
191
        if inplace:
            x *= weight
            result_x = x
        else:
            result_x = x*weight
        return result_x

192
    def get_distance_array(self, distribution_strategy):
Theo Steininger's avatar
Theo Steininger committed
193
194
        """ Calculates an n-dimensional array with its entries being the
        lengths of the vectors from the zero point of the grid.
theos's avatar
theos committed
195

Theo Steininger's avatar
Theo Steininger committed
196
197
        Parameters
        ----------
Theo Steininger's avatar
Theo Steininger committed
198
199
200
        distribution_strategy : str
            The distribution_strategy which shall be used the returned
            distributed_data_object.
theos's avatar
theos committed
201

Theo Steininger's avatar
Theo Steininger committed
202
203
        Returns
        -------
Theo Steininger's avatar
Theo Steininger committed
204
        distributed_data_object
Theo Steininger's avatar
Theo Steininger committed
205
206
            A d2o containing the distances.

theos's avatar
theos committed
207
        """
Theo Steininger's avatar
Theo Steininger committed
208

theos's avatar
theos committed
209
210
211
        shape = self.shape
        # prepare the distributed_data_object
        nkdict = distributed_data_object(
Martin Reinecke's avatar
Martin Reinecke committed
212
                        global_shape=shape, dtype=np.float64,
theos's avatar
theos committed
213
214
215
216
217
218
219
220
221
                        distribution_strategy=distribution_strategy)

        if distribution_strategy in DISTRIBUTION_STRATEGIES['slicing']:
            # get the node's individual slice of the first dimension
            slice_of_first_dimension = slice(
                                    *nkdict.distributor.local_slice[0:2])
        elif distribution_strategy in DISTRIBUTION_STRATEGIES['not']:
            slice_of_first_dimension = slice(0, shape[0])
        else:
222
223
            raise ValueError(
                "Unsupported distribution strategy")
theos's avatar
theos committed
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
        dists = self._distance_array_helper(slice_of_first_dimension)
        nkdict.set_local_data(dists)

        return nkdict

    def _distance_array_helper(self, slice_of_first_dimension):
        dk = self.distances
        shape = self.shape

        inds = []
        for a in shape:
            inds += [slice(0, a)]

        cords = np.ogrid[inds]

239
240
        dists = (cords[0] - shape[0]//2)*dk[0]
        dists *= dists
theos's avatar
theos committed
241
        # apply zerocenterQ shift
242
243
        if not self.zerocenter[0]:
            dists = np.fft.ifftshift(dists)
theos's avatar
theos committed
244
245
246
        # only save the individual slice
        dists = dists[slice_of_first_dimension]
        for ii in range(1, len(shape)):
247
248
            temp = (cords[ii] - shape[ii] // 2) * dk[ii]
            temp *= temp
249
            if not self.zerocenter[ii]:
Martin Reinecke's avatar
Martin Reinecke committed
250
                temp = np.fft.ifftshift(temp)
theos's avatar
theos committed
251
252
253
254
            dists = dists + temp
        dists = np.sqrt(dists)
        return dists

Martin Reinecke's avatar
Martin Reinecke committed
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
    def get_unique_distances(self):
        dimensions = len(self.shape)
        if dimensions == 1:  # extra easy
            maxdist = self.shape[0]//2
            return np.arange(maxdist+1, dtype=np.float64) * self.distances[0]
        if np.all(self.distances == self.distances[0]):  # shortcut
            maxdist = np.asarray(self.shape)//2
            tmp = np.sum(maxdist*maxdist)
            tmp = np.zeros(tmp+1, dtype=np.bool)
            t2 = np.arange(maxdist[0]+1, dtype=np.int64)
            t2 *= t2
            for i in range(1, dimensions):
                t3 = np.arange(maxdist[i]+1, dtype=np.int64)
                t3 *= t3
                t2 = np.add.outer(t2, t3)
            tmp[t2] = True
            return np.sqrt(np.nonzero(tmp)[0])*self.distances[0]
        else:  # do it the hard way
            tmp = self.get_distance_array('not').unique()  # expensive!
            tol = 1e-12*tmp[-1]
            # remove all points that are closer than tol to their right
            # neighbors.
            # I'm appending the last value*2 to the array to treat the
            # rightmost point correctly.
            return tmp[np.diff(np.r_[tmp, 2*tmp[-1]]) > tol]

    def get_natural_binbounds(self):
        tmp = self.get_unique_distances()
        return 0.5*(tmp[:-1]+tmp[1:])

285
    def get_fft_smoothing_kernel_function(self, sigma):
Theo Steininger's avatar
Theo Steininger committed
286
        return lambda x: np.exp(-2. * np.pi*np.pi * x*x * sigma*sigma)
theos's avatar
theos committed
287

288
289
290
291
    # ---Added properties and methods---

    @property
    def distances(self):
Theo Steininger's avatar
Theo Steininger committed
292
293
294
        """Distance between two grid points along each axis. It is a tuple
        of positive floating point numbers with the n-th entry giving the
        distances of grid points along the n-th dimension.
295
        """
Theo Steininger's avatar
Theo Steininger committed
296

297
298
299
300
        return self._distances

    @property
    def zerocenter(self):
301
        """Returns True if grid points lie symmetrically around zero.
Theo Steininger's avatar
Theo Steininger committed
302

303
304
        Returns
        -------
Theo Steininger's avatar
Theo Steininger committed
305
306
307
308
309
        bool
            True if the grid points are centered around the 0 grid point. This
            option is most common for harmonic spaces (where both conventions
            are used) but may be used for position spaces, too.

310
        """
Theo Steininger's avatar
Theo Steininger committed
311

312
313
314
315
316
317
318
319
320
321
322
323
        return self._zerocenter

    def _parse_shape(self, shape):
        if np.isscalar(shape):
            shape = (shape,)
        temp = np.empty(len(shape), dtype=np.int)
        temp[:] = shape
        return tuple(temp)

    def _parse_distances(self, distances):
        if distances is None:
            if self.harmonic:
Martin Reinecke's avatar
Martin Reinecke committed
324
                temp = np.ones_like(self.shape, dtype=np.float64)
325
            else:
Martin Reinecke's avatar
Martin Reinecke committed
326
                temp = 1 / np.array(self.shape, dtype=np.float64)
327
        else:
Martin Reinecke's avatar
Martin Reinecke committed
328
            temp = np.empty(len(self.shape), dtype=np.float64)
329
330
331
332
333
334
335
            temp[:] = distances
        return tuple(temp)

    def _parse_zerocenter(self, zerocenter):
        temp = np.empty(len(self.shape), dtype=bool)
        temp[:] = zerocenter
        return tuple(temp)
336
337
338
339

    # ---Serialization---

    def _to_hdf5(self, hdf5_group):
Jait Dixit's avatar
Jait Dixit committed
340
341
342
        hdf5_group['shape'] = self.shape
        hdf5_group['zerocenter'] = self.zerocenter
        hdf5_group['distances'] = self.distances
343
        hdf5_group['harmonic'] = self.harmonic
Jait Dixit's avatar
Jait Dixit committed
344

345
346
347
        return None

    @classmethod
Theo Steininger's avatar
Theo Steininger committed
348
    def _from_hdf5(cls, hdf5_group, repository):
349
        result = cls(
Jait Dixit's avatar
Jait Dixit committed
350
351
352
            shape=hdf5_group['shape'][:],
            zerocenter=hdf5_group['zerocenter'][:],
            distances=hdf5_group['distances'][:],
353
            harmonic=hdf5_group['harmonic'][()],
Jait Dixit's avatar
Jait Dixit committed
354
            )
355
        return result