nifty_core.py 164 KB
Newer Older
Marco Selig's avatar
Marco Selig committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
## NIFTY (Numerical Information Field Theory) has been developed at the
## Max-Planck-Institute for Astrophysics.
##
## Copyright (C) 2013 Max-Planck-Society
##
## Author: Marco Selig
## Project homepage: <http://www.mpa-garching.mpg.de/ift/nifty/>
##
## This program is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
## See the GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program. If not, see <http://www.gnu.org/licenses/>.

"""
    ..                  __   ____   __
    ..                /__/ /   _/ /  /_
    ..      __ ___    __  /  /_  /   _/  __   __
    ..    /   _   | /  / /   _/ /  /   /  / /  /
    ..   /  / /  / /  / /  /   /  /_  /  /_/  /
    ..  /__/ /__/ /__/ /__/    \___/  \___   /  core
    ..                               /______/

    .. The NIFTY project homepage is http://www.mpa-garching.mpg.de/ift/nifty/

    NIFTY [#]_, "Numerical Information Field Theory", is a versatile
    library designed to enable the development of signal inference algorithms
    that operate regardless of the underlying spatial grid and its resolution.
    Its object-oriented framework is written in Python, although it accesses
    libraries written in Cython, C++, and C for efficiency.

    NIFTY offers a toolkit that abstracts discretized representations of
    continuous spaces, fields in these spaces, and operators acting on fields
    into classes. Thereby, the correct normalization of operations on fields is
    taken care of automatically without concerning the user. This allows for an
    abstract formulation and programming of inference algorithms, including
    those derived within information field theory. Thus, NIFTY permits its user
Marco Selig's avatar
Marco Selig committed
45
    to rapidly prototype algorithms in 1D and then apply the developed code in
Marco Selig's avatar
Marco Selig committed
46
47
48
49
50
    higher-dimensional settings of real world problems. The set of spaces on
    which NIFTY operates comprises point sets, n-dimensional regular grids,
    spherical spaces, their harmonic counterparts, and product spaces
    constructed as combinations of those.

51
52
53
54
55
56
57
    References
    ----------
    .. [#] Selig et al., "NIFTY -- Numerical Information Field Theory --
        a versatile Python library for signal inference",
        `A&A, vol. 554, id. A26 <http://dx.doi.org/10.1051/0004-6361/201321236>`_,
        2013; `arXiv:1301.4499 <http://www.arxiv.org/abs/1301.4499>`_

Marco Selig's avatar
Marco Selig committed
58
59
60
61
62
63
    Class & Feature Overview
    ------------------------
    The NIFTY library features three main classes: **spaces** that represent
    certain grids, **fields** that are defined on spaces, and **operators**
    that apply to fields.

64
65
    .. Overview of all (core) classes:
    ..
Marco Selig's avatar
Marco Selig committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
    .. - switch
    .. - notification
    .. - _about
    .. - random
    .. - space
    ..     - point_space
    ..     - rg_space
    ..     - lm_space
    ..     - gl_space
    ..     - hp_space
    ..     - nested_space
    .. - field
    .. - operator
    ..     - diagonal_operator
    ..         - power_operator
    ..     - projection_operator
    ..     - vecvec_operator
    ..     - response_operator
    .. - probing
    ..     - trace_probing
    ..     - diagonal_probing

88
89
    Overview of the main classes and functions:

Marco Selig's avatar
Marco Selig committed
90
91
    .. automodule:: nifty

92
93
94
95
96
97
98
99
100
101
102
103
104
105
    - :py:class:`space`
        - :py:class:`point_space`
        - :py:class:`rg_space`
        - :py:class:`lm_space`
        - :py:class:`gl_space`
        - :py:class:`hp_space`
        - :py:class:`nested_space`
    - :py:class:`field`
    - :py:class:`operator`
        - :py:class:`diagonal_operator`
            - :py:class:`power_operator`
        - :py:class:`projection_operator`
        - :py:class:`vecvec_operator`
        - :py:class:`response_operator`
Marco Selig's avatar
Marco Selig committed
106

107
        .. currentmodule:: nifty.nifty_tools
Marco Selig's avatar
Marco Selig committed
108

109
110
        - :py:class:`invertible_operator`
        - :py:class:`propagator_operator`
Marco Selig's avatar
Marco Selig committed
111

112
        .. currentmodule:: nifty.nifty_explicit
Marco Selig's avatar
Marco Selig committed
113

114
        - :py:class:`explicit_operator`
Marco Selig's avatar
Marco Selig committed
115

116
    .. automodule:: nifty
Marco Selig's avatar
Marco Selig committed
117

118
119
120
    - :py:class:`probing`
        - :py:class:`trace_probing`
        - :py:class:`diagonal_probing`
Marco Selig's avatar
Marco Selig committed
121

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
        .. currentmodule:: nifty.nifty_explicit

        - :py:class:`explicit_probing`

    .. currentmodule:: nifty.nifty_tools

    - :py:class:`conjugate_gradient`
    - :py:class:`steepest_descent`

    .. currentmodule:: nifty.nifty_explicit

    - :py:func:`explicify`

    .. currentmodule:: nifty.nifty_power

    - :py:func:`weight_power`,
      :py:func:`smooth_power`,
      :py:func:`infer_power`,
      :py:func:`interpolate_power`
Marco Selig's avatar
Marco Selig committed
141
142
143
144

"""
from __future__ import division
import numpy as np
Marco Selig's avatar
Marco Selig committed
145
import pylab as pl
146

147
148
149
from nifty_paradict import space_paradict,\
                            point_space_paradict,\
                            nested_space_paradict
Ultimanet's avatar
Ultimanet committed
150
151
152

from nifty_about import about
from nifty_random import random
153
154
from nifty.nifty_mpi_data import distributed_data_object

Ultima's avatar
Ultima committed
155
import nifty.nifty_utilities as utilities 
Marco Selig's avatar
Marco Selig committed
156

Marco Selig's avatar
Marco Selig committed
157

Marco Selig's avatar
Marco Selig committed
158
pi = 3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679
159

Marco Selig's avatar
Marco Selig committed
160
161


Ultimanet's avatar
Ultimanet committed
162
163
164
165

##=============================================================================

class space(object):
Marco Selig's avatar
Marco Selig committed
166
    """
Ultimanet's avatar
Ultimanet committed
167
168
169
170
171
172
173
        ..     _______   ______    ____ __   _______   _______
        ..   /  _____/ /   _   | /   _   / /   ____/ /   __  /
        ..  /_____  / /  /_/  / /  /_/  / /  /____  /  /____/
        .. /_______/ /   ____/  \______|  \______/  \______/  class
        ..          /__/

        NIFTY base class for spaces and their discretizations.
Marco Selig's avatar
Marco Selig committed
174

Ultimanet's avatar
Ultimanet committed
175
176
177
        The base NIFTY space class is an abstract class from which other
        specific space subclasses, including those preimplemented in NIFTY
        (e.g. the regular grid class) must be derived.
Marco Selig's avatar
Marco Selig committed
178
179
180

        Parameters
        ----------
Ultimanet's avatar
Ultimanet committed
181
182
183
184
185
186
        para : {single object, list of objects}, *optional*
            This is a freeform list of parameters that derivatives of the space
            class can use (default: 0).
        datatype : numpy.dtype, *optional*
            Data type of the field values for a field defined on this space
            (default: numpy.float64).
Marco Selig's avatar
Marco Selig committed
187
188
189

        See Also
        --------
Ultimanet's avatar
Ultimanet committed
190
191
192
193
194
195
196
197
        point_space :  A class for unstructured lists of numbers.
        rg_space : A class for regular cartesian grids in arbitrary dimensions.
        hp_space : A class for the HEALPix discretization of the sphere
            [#]_.
        gl_space : A class for the Gauss-Legendre discretization of the sphere
            [#]_.
        lm_space : A class for spherical harmonic components.
        nested_space : A class for product spaces.
Marco Selig's avatar
Marco Selig committed
198

Ultimanet's avatar
Ultimanet committed
199
200
201
202
203
204
205
206
        References
        ----------
        .. [#] K.M. Gorski et al., 2005, "HEALPix: A Framework for
               High-Resolution Discretization and Fast Analysis of Data
               Distributed on the Sphere", *ApJ* 622..759G.
        .. [#] M. Reinecke and D. Sverre Seljebotn, 2013, "Libsharp - spherical
               harmonic transforms revisited";
               `arXiv:1303.4945 <http://www.arxiv.org/abs/1303.4945>`_
Marco Selig's avatar
Marco Selig committed
207
208
209

        Attributes
        ----------
Ultimanet's avatar
Ultimanet committed
210
211
212
213
214
215
216
217
218
219
        para : {single object, list of objects}
            This is a freeform list of parameters that derivatives of the space class can use.
        datatype : numpy.dtype
            Data type of the field values for a field defined on this space.
        discrete : bool
            Whether the space is inherently discrete (true) or a discretization
            of a continuous space (false).
        vol : numpy.ndarray
            An array of pixel volumes, only one component if the pixels all
            have the same volume.
Marco Selig's avatar
Marco Selig committed
220
    """
221
    def __init__(self, para=0, datatype=None):
Marco Selig's avatar
Marco Selig committed
222
        """
Ultimanet's avatar
Ultimanet committed
223
            Sets the attributes for a space class instance.
Marco Selig's avatar
Marco Selig committed
224
225
226

            Parameters
            ----------
Ultimanet's avatar
Ultimanet committed
227
228
229
230
231
232
            para : {single object, list of objects}, *optional*
                This is a freeform list of parameters that derivatives of the
                space class can use (default: 0).
            datatype : numpy.dtype, *optional*
                Data type of the field values for a field defined on this space
                (default: numpy.float64).
Marco Selig's avatar
Marco Selig committed
233

Ultimanet's avatar
Ultimanet committed
234
235
236
            Returns
            -------
            None
Marco Selig's avatar
Marco Selig committed
237
        """
Ultimanet's avatar
Ultimanet committed
238
        self.paradict = space_paradict(default=para)        
Marco Selig's avatar
Marco Selig committed
239

Ultimanet's avatar
Ultimanet committed
240
241
242
243
244
245
246
        ## check data type
        if(datatype is None):
            datatype = np.float64
        elif(datatype not in [np.int8,np.int16,np.int32,np.int64,np.float16,np.float32,np.float64,np.complex64,np.complex128]):
            about.warnings.cprint("WARNING: data type set to default.")
            datatype = np.float64
        self.datatype = datatype
Marco Selig's avatar
Marco Selig committed
247

Ultimanet's avatar
Ultimanet committed
248
249
250
251
252
253
254
255
256
257
        self.discrete = True
        self.vol = np.real(np.array([1],dtype=self.datatype))
        
    @property
    def para(self):
        return self.paradict['default']
    
    @para.setter
    def para(self, x):
        self.paradict['default'] = x
Marco Selig's avatar
Marco Selig committed
258

Ultimanet's avatar
Ultimanet committed
259
260
    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    def _freeze_config(self, dictionary):
Marco Selig's avatar
Marco Selig committed
261
        """
Ultimanet's avatar
Ultimanet committed
262
263
264
265
            a helper function which forms a hashable identifying object from 
            a dictionary which can be used as key of a dict
        """        
        return frozenset(dictionary.items())
Marco Selig's avatar
Marco Selig committed
266

267
268
269
    def copy(self):
        return space(para = self.para,
                     datatype = self.datatype) 
Marco Selig's avatar
Marco Selig committed
270
271

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Ultimanet's avatar
Ultimanet committed
272
273
274
275
    def getitem(self, data, key):
        raise NotImplementedError(about._errors.cstring(\
            "ERROR: no generic instance method 'getitem'."))
        
Marco Selig's avatar
Marco Selig committed
276

Ultimanet's avatar
Ultimanet committed
277
278
279
280
281
282
283
284
285
    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    def setitem(self, data, key):
        raise NotImplementedError(about._errors.cstring(\
            "ERROR: no generic instance method 'getitem'."))
        
    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++            
    def apply_scalar_function(self, x, function, inplace=False):
        raise NotImplementedError(about._errors.cstring(\
            "ERROR: no generic instance method 'apply_scalar_function'."))
Marco Selig's avatar
Marco Selig committed
286

Ultimanet's avatar
Ultimanet committed
287
288
289
290
291
292
293
294
295
    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++            
    def unary_operation(self, x, op=None):
        raise NotImplementedError(about._errors.cstring(\
            "ERROR: no generic instance method 'unary_operation'."))
    
    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++            
    def binary_operation(self, x, y, op=None):
        raise NotImplementedError(about._errors.cstring(\
            "ERROR: no generic instance method 'binary_operation'."))
Marco Selig's avatar
Marco Selig committed
296

Ultimanet's avatar
Ultimanet committed
297
    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++            
298
    def get_norm(self, x, q):
Ultimanet's avatar
Ultimanet committed
299
300
        raise NotImplementedError(about._errors.cstring(\
            "ERROR: no generic instance method 'norm'."))
Marco Selig's avatar
Marco Selig committed
301

302
    def get_shape(self):
Ultimanet's avatar
Ultimanet committed
303
304
        raise NotImplementedError(about._errors.cstring(\
            "ERROR: no generic instance method 'shape'."))
Marco Selig's avatar
Marco Selig committed
305

Ultimanet's avatar
Ultimanet committed
306
    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
307
    def get_dim(self,split=False):
Marco Selig's avatar
Marco Selig committed
308
        """
Ultimanet's avatar
Ultimanet committed
309
            Computes the dimension of the space, i.e.\  the number of pixels.
Marco Selig's avatar
Marco Selig committed
310
311
312

            Parameters
            ----------
Ultimanet's avatar
Ultimanet committed
313
314
315
            split : bool, *optional*
                Whether to return the dimension split up, i.e. the numbers of
                pixels in each direction, or not (default: False).
Marco Selig's avatar
Marco Selig committed
316

Ultimanet's avatar
Ultimanet committed
317
318
319
320
            Returns
            -------
            dim : {int, numpy.ndarray}
                Dimension(s) of the space.
Marco Selig's avatar
Marco Selig committed
321
        """
322
323
        raise NotImplementedError(about._errors.cstring(
                    "ERROR: no generic instance method 'dim'."))
Marco Selig's avatar
Marco Selig committed
324
325
326

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

327
    def get_dof(self):
Marco Selig's avatar
Marco Selig committed
328
        """
Ultimanet's avatar
Ultimanet committed
329
            Computes the number of degrees of freedom of the space.
Marco Selig's avatar
Marco Selig committed
330
331
332

            Returns
            -------
Ultimanet's avatar
Ultimanet committed
333
334
            dof : int
                Number of degrees of freedom of the space.
Marco Selig's avatar
Marco Selig committed
335
        """
336
337
        raise NotImplementedError(about._errors.cstring(
                    "ERROR: no generic instance method 'dof'."))
Marco Selig's avatar
Marco Selig committed
338
339
340

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Ultimanet's avatar
Ultimanet committed
341
    def enforce_power(self,spec,**kwargs):
Marco Selig's avatar
Marco Selig committed
342
        """
Ultimanet's avatar
Ultimanet committed
343
            Provides a valid power spectrum array from a given object.
Marco Selig's avatar
Marco Selig committed
344
345
346

            Parameters
            ----------
Ultimanet's avatar
Ultimanet committed
347
348
349
350
            spec : {scalar, list, numpy.ndarray, nifty.field, function}
                Fiducial power spectrum from which a valid power spectrum is to
                be calculated. Scalars are interpreted as constant power
                spectra.
Marco Selig's avatar
Marco Selig committed
351
352
353

            Returns
            -------
Ultimanet's avatar
Ultimanet committed
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
            spec : numpy.ndarray
                Valid power spectrum.

            Other parameters
            ----------------
            size : int, *optional*
                Number of bands the power spectrum shall have (default: None).
            kindex : numpy.ndarray, *optional*
                Scale of each band.
            codomain : nifty.space, *optional*
                A compatible codomain for power indexing (default: None).
            log : bool, *optional*
                Flag specifying if the spectral binning is performed on logarithmic
                scale or not; if set, the number of used bins is set
                automatically (if not given otherwise); by default no binning
                is done (default: None).
            nbin : integer, *optional*
                Number of used spectral bins; if given `log` is set to ``False``;
                integers below the minimum of 3 induce an automatic setting;
                by default no binning is done (default: None).
            binbounds : {list, array}, *optional*
                User specific inner boundaries of the bins, which are preferred
                over the above parameters; by default no binning is done
                (default: None).            vmin : {scalar, list, ndarray, field}, *optional*
                Lower limit of the uniform distribution if ``random == "uni"``
                (default: 0).
Marco Selig's avatar
Marco Selig committed
380
381

        """
382
383
        raise NotImplementedError(about._errors.cstring(
                    "ERROR: no generic instance method 'enforce_power'."))
Marco Selig's avatar
Marco Selig committed
384

Ultimanet's avatar
Ultimanet committed
385
386
387
    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    def set_power_indices(self,**kwargs):
Marco Selig's avatar
Marco Selig committed
388
        """
Ultimanet's avatar
Ultimanet committed
389
            Sets the (un)indexing objects for spectral indexing internally.
Marco Selig's avatar
Marco Selig committed
390
391
392

            Parameters
            ----------
Ultimanet's avatar
Ultimanet committed
393
394
395
396
397
398
399
400
401
402
403
404
405
            log : bool
                Flag specifying if the binning is performed on logarithmic
                scale or not; if set, the number of used bins is set
                automatically (if not given otherwise); by default no binning
                is done (default: None).
            nbin : integer
                Number of used bins; if given `log` is set to ``False``;
                integers below the minimum of 3 induce an automatic setting;
                by default no binning is done (default: None).
            binbounds : {list, array}
                User specific inner boundaries of the bins, which are preferred
                over the above parameters; by default no binning is done
                (default: None).
Marco Selig's avatar
Marco Selig committed
406
407
408
409
410

            Returns
            -------
            None

Ultimanet's avatar
Ultimanet committed
411
412
413
414
            See Also
            --------
            get_power_indices

Marco Selig's avatar
Marco Selig committed
415
        """
416
417
        raise NotImplementedError(about._errors.cstring(
                    "ERROR: no generic instance method 'set_power_indices'."))
Marco Selig's avatar
Marco Selig committed
418

Ultimanet's avatar
Ultimanet committed
419
    def get_power_indices(self,**kwargs):
Marco Selig's avatar
Marco Selig committed
420
        """
Ultimanet's avatar
Ultimanet committed
421
422
423
424
425
426
            Provides the (un)indexing objects for spectral indexing.

            Provides one-dimensional arrays containing the scales of the
            spectral bands and the numbers of modes per scale, and an array
            giving for each component of a field the corresponding index of a
            power spectrum as well as an Unindexing array.
Marco Selig's avatar
Marco Selig committed
427
428
429

            Parameters
            ----------
Ultimanet's avatar
Ultimanet committed
430
431
432
433
434
435
436
437
438
439
440
441
442
            log : bool
                Flag specifying if the binning is performed on logarithmic
                scale or not; if set, the number of used bins is set
                automatically (if not given otherwise); by default no binning
                is done (default: None).
            nbin : integer
                Number of used bins; if given `log` is set to ``False``;
                integers below the minimum of 3 induce an automatic setting;
                by default no binning is done (default: None).
            binbounds : {list, array}
                User specific inner boundaries of the bins, which are preferred
                over the above parameters; by default no binning is done
                (default: None).
Marco Selig's avatar
Marco Selig committed
443
444
445

            Returns
            -------
Ultimanet's avatar
Ultimanet committed
446
447
448
449
450
451
452
453
454
            kindex : numpy.ndarray
                Scale of each spectral band.
            rho : numpy.ndarray
                Number of modes per scale represented in the discretization.
            pindex : numpy.ndarray
                Indexing array giving the power spectrum index for each
                represented mode.
            pundex : numpy.ndarray
                Unindexing array undoing power spectrum indexing.
Marco Selig's avatar
Marco Selig committed
455

Ultimanet's avatar
Ultimanet committed
456
457
458
459
460
461
462
            Notes
            -----
            The ``kindex`` and ``rho`` are each one-dimensional arrays.
            The indexing array is of the same shape as a field living in this
            space and contains the indices of the associated bands.
            Indexing with the unindexing array undoes the indexing with the
            indexing array; i.e., ``power == power[pindex].flatten()[pundex]``.
Marco Selig's avatar
Marco Selig committed
463

Ultimanet's avatar
Ultimanet committed
464
465
466
            See Also
            --------
            set_power_indices
Marco Selig's avatar
Marco Selig committed
467
468

        """
469
470
        raise NotImplementedError(about._errors.cstring(
                "ERROR: no generic instance method 'get_power_indices'."))
Marco Selig's avatar
Marco Selig committed
471
472

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Ultimanet's avatar
Ultimanet committed
473
474
    
    def cast(self, x, verbose=False):
Marco Selig's avatar
Marco Selig committed
475
        """
Ultimanet's avatar
Ultimanet committed
476
477
478
            Computes valid field values from a given object, trying
            to translate the given data into a valid form. Thereby it is as 
            benevolent as possible. 
Marco Selig's avatar
Marco Selig committed
479
480
481

            Parameters
            ----------
Ultimanet's avatar
Ultimanet committed
482
483
            x : {float, numpy.ndarray, nifty.field}
                Object to be transformed into an array of valid field values.
Marco Selig's avatar
Marco Selig committed
484
485
486

            Returns
            -------
Ultimanet's avatar
Ultimanet committed
487
488
489
            x : numpy.ndarray, distributed_data_object
                Array containing the field values, which are compatible to the
                space.
Marco Selig's avatar
Marco Selig committed
490

Ultimanet's avatar
Ultimanet committed
491
492
493
494
495
            Other parameters
            ----------------
            verbose : bool, *optional*
                Whether the method should raise a warning if information is 
                lost during casting (default: False).
Marco Selig's avatar
Marco Selig committed
496
        """
Ultimanet's avatar
Ultimanet committed
497
        return self.enforce_values(x, extend=True)
Marco Selig's avatar
Marco Selig committed
498

Ultimanet's avatar
Ultimanet committed
499
    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Marco Selig's avatar
Marco Selig committed
500

Ultimanet's avatar
Ultimanet committed
501
    def enforce_shape(self,x):
Marco Selig's avatar
Marco Selig committed
502
        """
Ultimanet's avatar
Ultimanet committed
503
504
            Shapes an array of valid field values correctly, according to the
            specifications of the space instance.
Marco Selig's avatar
Marco Selig committed
505

Ultimanet's avatar
Ultimanet committed
506
507
508
509
            Parameters
            ----------
            x : numpy.ndarray
                Array containing the field values to be put into shape.
Marco Selig's avatar
Marco Selig committed
510

Ultimanet's avatar
Ultimanet committed
511
512
513
514
515
516
            Returns
            -------
            y : numpy.ndarray
                Correctly shaped array.
        """
        raise NotImplementedError(about._errors.cstring("ERROR: no generic instance method 'enforce_shape'."))
Marco Selig's avatar
Marco Selig committed
517
518
519

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Ultimanet's avatar
Ultimanet committed
520
521
522
523
    def enforce_values(self,x,extend=True):
        """
            Computes valid field values from a given object, according to the
            constraints from the space instance.
Marco Selig's avatar
Marco Selig committed
524

Ultimanet's avatar
Ultimanet committed
525
526
527
528
            Parameters
            ----------
            x : {float, numpy.ndarray, nifty.field}
                Object to be transformed into an array of valid field values.
Marco Selig's avatar
Marco Selig committed
529

Ultimanet's avatar
Ultimanet committed
530
531
532
533
            Returns
            -------
            x : numpy.ndarray
                Array containing the valid field values.
Marco Selig's avatar
Marco Selig committed
534

Ultimanet's avatar
Ultimanet committed
535
536
537
538
539
540
541
            Other parameters
            ----------------
            extend : bool, *optional*
                Whether a scalar is extented to a constant array or not
                (default: True).
        """
        raise NotImplementedError(about._errors.cstring("ERROR: no generic instance method 'enforce_values'."))
Marco Selig's avatar
Marco Selig committed
542
543
544
545


    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Ultimanet's avatar
Ultimanet committed
546
    def get_random_values(self,**kwargs):
Marco Selig's avatar
Marco Selig committed
547
        """
Ultimanet's avatar
Ultimanet committed
548
549
            Generates random field values according to the specifications given
            by the parameters.
Marco Selig's avatar
Marco Selig committed
550

Ultimanet's avatar
Ultimanet committed
551
552
553
554
555
556
557
            Returns
            -------
            x : numpy.ndarray
                Valid field values.

            Other parameters
            ----------------
Marco Selig's avatar
Marco Selig committed
558
            random : string, *optional*
Ultimanet's avatar
Ultimanet committed
559
560
561
                Specifies the probability distribution from which the random
                numbers are to be drawn.
                Supported distributions are:
Marco Selig's avatar
Marco Selig committed
562
563

                - "pm1" (uniform distribution over {+1,-1} or {+1,+i,-1,-i}
Ultimanet's avatar
Ultimanet committed
564
565
                - "gau" (normal distribution with zero-mean and a given standard
                    deviation or variance)
Marco Selig's avatar
Marco Selig committed
566
567
568
569
                - "syn" (synthesizes from a given power spectrum)
                - "uni" (uniform distribution over [vmin,vmax[)

                (default: None).
Ultimanet's avatar
Ultimanet committed
570
571
572
573
574
575
576
            dev : float, *optional*
                Standard deviation (default: 1).
            var : float, *optional*
                Variance, overriding `dev` if both are specified
                (default: 1).
            spec : {scalar, list, numpy.ndarray, nifty.field, function}, *optional*
                Power spectrum (default: 1).
577
578
579
580
            pindex : numpy.ndarray, *optional*
                Indexing array giving the power spectrum index of each band
                (default: None).
            kindex : numpy.ndarray, *optional*
Ultimanet's avatar
Ultimanet committed
581
                Scale of each band (default: None).
582
            codomain : nifty.space, *optional*
Ultimanet's avatar
Ultimanet committed
583
                A compatible codomain with power indices (default: None).
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
            log : bool, *optional*
                Flag specifying if the spectral binning is performed on logarithmic
                scale or not; if set, the number of used bins is set
                automatically (if not given otherwise); by default no binning
                is done (default: None).
            nbin : integer, *optional*
                Number of used spectral bins; if given `log` is set to ``False``;
                integers below the minimum of 3 induce an automatic setting;
                by default no binning is done (default: None).
            binbounds : {list, array}, *optional*
                User specific inner boundaries of the bins, which are preferred
                over the above parameters; by default no binning is done
                (default: None).            vmin : {scalar, list, ndarray, field}, *optional*
                Lower limit of the uniform distribution if ``random == "uni"``
                (default: 0).
Ultimanet's avatar
Ultimanet committed
599
600
601
602
            vmin : float, *optional*
                Lower limit for a uniform distribution (default: 0).
            vmax : float, *optional*
                Upper limit for a uniform distribution (default: 1).
Marco Selig's avatar
Marco Selig committed
603
        """
Ultimanet's avatar
Ultimanet committed
604
        raise NotImplementedError(about._errors.cstring("ERROR: no generic instance method 'get_random_values'."))
Marco Selig's avatar
Marco Selig committed
605
606
607

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Ultimanet's avatar
Ultimanet committed
608
    def check_codomain(self,codomain):
Marco Selig's avatar
Marco Selig committed
609
        """
Ultimanet's avatar
Ultimanet committed
610
            Checks whether a given codomain is compatible to the space or not.
Marco Selig's avatar
Marco Selig committed
611
612
613

            Parameters
            ----------
Ultimanet's avatar
Ultimanet committed
614
615
            codomain : nifty.space
                Space to be checked for compatibility.
Marco Selig's avatar
Marco Selig committed
616
617
618

            Returns
            -------
Ultimanet's avatar
Ultimanet committed
619
620
            check : bool
                Whether or not the given codomain is compatible to the space.
Marco Selig's avatar
Marco Selig committed
621
        """
Ultimanet's avatar
Ultimanet committed
622
        raise NotImplementedError(about._errors.cstring("ERROR: no generic instance method 'check_codomain'."))
Marco Selig's avatar
Marco Selig committed
623
624
625

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Ultimanet's avatar
Ultimanet committed
626
    def get_codomain(self,**kwargs):
Marco Selig's avatar
Marco Selig committed
627
        """
Ultimanet's avatar
Ultimanet committed
628
629
630
            Generates a compatible codomain to which transformations are
            reasonable, usually either the position basis or the basis of
            harmonic eigenmodes.
Marco Selig's avatar
Marco Selig committed
631
632
633

            Parameters
            ----------
Ultimanet's avatar
Ultimanet committed
634
635
636
637
638
639
640
641
642
            coname : string, *optional*
                String specifying a desired codomain (default: None).
            cozerocenter : {bool, numpy.ndarray}, *optional*
                Whether or not the grid is zerocentered for each axis or not
                (default: None).
            conest : list, *optional*
                List of nested spaces of the codomain (default: None).
            coorder : list, *optional*
                Permutation of the list of nested spaces (default: None).
Marco Selig's avatar
Marco Selig committed
643
644
645

            Returns
            -------
Ultimanet's avatar
Ultimanet committed
646
647
648
649
            codomain : nifty.space
                A compatible codomain.
        """
        raise NotImplementedError(about._errors.cstring("ERROR: no generic instance method 'get_codomain'."))
Marco Selig's avatar
Marco Selig committed
650

Ultimanet's avatar
Ultimanet committed
651
    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Marco Selig's avatar
Marco Selig committed
652

Ultimanet's avatar
Ultimanet committed
653
    def get_meta_volume(self,total=False):
Marco Selig's avatar
Marco Selig committed
654
        """
Ultimanet's avatar
Ultimanet committed
655
            Calculates the meta volumes.
Marco Selig's avatar
Marco Selig committed
656

Ultimanet's avatar
Ultimanet committed
657
658
659
660
            The meta volumes are the volumes associated with each component of
            a field, taking into account field components that are not
            explicitly included in the array of field values but are determined
            by symmetry conditions.
Marco Selig's avatar
Marco Selig committed
661

Ultimanet's avatar
Ultimanet committed
662
663
664
665
666
            Parameters
            ----------
            total : bool, *optional*
                Whether to return the total meta volume of the space or the
                individual ones of each field component (default: False).
Marco Selig's avatar
Marco Selig committed
667

Ultimanet's avatar
Ultimanet committed
668
669
670
671
672
673
            Returns
            -------
            mol : {numpy.ndarray, float}
                Meta volume of the field components or the complete space.
        """
        raise NotImplementedError(about._errors.cstring("ERROR: no generic instance method 'get_meta_volume'."))
Marco Selig's avatar
Marco Selig committed
674
675
676

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Ultimanet's avatar
Ultimanet committed
677
    def calc_weight(self,x,power=1):
Marco Selig's avatar
Marco Selig committed
678
        """
Ultimanet's avatar
Ultimanet committed
679
680
            Weights a given array of field values with the pixel volumes (not
            the meta volumes) to a given power.
Marco Selig's avatar
Marco Selig committed
681
682
683

            Parameters
            ----------
Ultimanet's avatar
Ultimanet committed
684
685
686
687
            x : numpy.ndarray
                Array to be weighted.
            power : float, *optional*
                Power of the pixel volumes to be used (default: 1).
Marco Selig's avatar
Marco Selig committed
688
689
690

            Returns
            -------
Ultimanet's avatar
Ultimanet committed
691
692
693
694
            y : numpy.ndarray
                Weighted array.
        """
        raise NotImplementedError(about._errors.cstring("ERROR: no generic instance method 'calc_weight'."))
Marco Selig's avatar
Marco Selig committed
695

696
697
698
    def get_weight(self, power=1):
        raise NotImplementedError(about._errors.cstring("ERROR: no generic instance method 'get_weight'."))
        
Marco Selig's avatar
Marco Selig committed
699
700
    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Ultimanet's avatar
Ultimanet committed
701
702
703
704
    def calc_dot(self,x,y):
        """
            Computes the discrete inner product of two given arrays of field
            values.
Marco Selig's avatar
Marco Selig committed
705

Ultimanet's avatar
Ultimanet committed
706
707
708
709
710
711
            Parameters
            ----------
            x : numpy.ndarray
                First array
            y : numpy.ndarray
                Second array
Marco Selig's avatar
Marco Selig committed
712

Ultimanet's avatar
Ultimanet committed
713
714
715
716
717
718
719
            Returns
            -------
            dot : scalar
                Inner product of the two arrays.
        """
        raise NotImplementedError(about._errors.cstring(\
            "ERROR: no generic instance method 'dot'."))
Marco Selig's avatar
Marco Selig committed
720
721
722



Ultimanet's avatar
Ultimanet committed
723
    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Marco Selig's avatar
Marco Selig committed
724

Ultimanet's avatar
Ultimanet committed
725
726
727
    def calc_transform(self,x,codomain=None,**kwargs):
        """
            Computes the transform of a given array of field values.
Marco Selig's avatar
Marco Selig committed
728
729
730

            Parameters
            ----------
Ultimanet's avatar
Ultimanet committed
731
732
733
            x : numpy.ndarray
                Array to be transformed.
            codomain : nifty.space, *optional*
734
                codomain space to which the transformation shall map
Ultimanet's avatar
Ultimanet committed
735
                (default: self).
Marco Selig's avatar
Marco Selig committed
736
737
738

            Returns
            -------
Ultimanet's avatar
Ultimanet committed
739
740
            Tx : numpy.ndarray
                Transformed array
741

Ultimanet's avatar
Ultimanet committed
742
743
744
745
            Other parameters
            ----------------
            iter : int, *optional*
                Number of iterations performed in specific transformations.
746
        """
Ultimanet's avatar
Ultimanet committed
747
        raise NotImplementedError(about._errors.cstring("ERROR: no generic instance method 'calc_transform'."))
Marco Selig's avatar
Marco Selig committed
748
749

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
750

Ultimanet's avatar
Ultimanet committed
751
    def calc_smooth(self,x,sigma=0,**kwargs):
Marco Selig's avatar
Marco Selig committed
752
        """
Ultimanet's avatar
Ultimanet committed
753
754
            Smoothes an array of field values by convolution with a Gaussian
            kernel.
Marco Selig's avatar
Marco Selig committed
755
756
757

            Parameters
            ----------
Ultimanet's avatar
Ultimanet committed
758
759
760
761
762
            x : numpy.ndarray
                Array of field values to be smoothed.
            sigma : float, *optional*
                Standard deviation of the Gaussian kernel, specified in units
                of length in position space (default: 0).
Marco Selig's avatar
Marco Selig committed
763
764
765

            Returns
            -------
Ultimanet's avatar
Ultimanet committed
766
767
            Gx : numpy.ndarray
                Smoothed array.
Marco Selig's avatar
Marco Selig committed
768

Ultimanet's avatar
Ultimanet committed
769
770
771
772
            Other parameters
            ----------------
            iter : int, *optional*
                Number of iterations (default: 0).
Marco Selig's avatar
Marco Selig committed
773
        """
Ultimanet's avatar
Ultimanet committed
774
        raise NotImplementedError(about._errors.cstring("ERROR: no generic instance method 'calc_smooth'."))
Marco Selig's avatar
Marco Selig committed
775
776
777

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Ultimanet's avatar
Ultimanet committed
778
    def calc_power(self,x,**kwargs):
Marco Selig's avatar
Marco Selig committed
779
        """
Ultimanet's avatar
Ultimanet committed
780
            Computes the power of an array of field values.
Marco Selig's avatar
Marco Selig committed
781
782
783

            Parameters
            ----------
Ultimanet's avatar
Ultimanet committed
784
785
786
            x : numpy.ndarray
                Array containing the field values of which the power is to be
                calculated.
Marco Selig's avatar
Marco Selig committed
787
788
789
790

            Returns
            -------
            spec : numpy.ndarray
Ultimanet's avatar
Ultimanet committed
791
                Power contained in the input array.
Marco Selig's avatar
Marco Selig committed
792
793
794

            Other parameters
            ----------------
Ultimanet's avatar
Ultimanet committed
795
796
797
            pindex : numpy.ndarray, *optional*
                Indexing array assigning the input array components to
                components of the power spectrum (default: None).
798
            kindex : numpy.ndarray, *optional*
Ultimanet's avatar
Ultimanet committed
799
800
801
802
                Scale corresponding to each band in the power spectrum
                (default: None).
            rho : numpy.ndarray, *optional*
                Number of degrees of freedom per band (default: None).
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
            codomain : nifty.space, *optional*
                A compatible codomain for power indexing (default: None).
            log : bool, *optional*
                Flag specifying if the spectral binning is performed on logarithmic
                scale or not; if set, the number of used bins is set
                automatically (if not given otherwise); by default no binning
                is done (default: None).
            nbin : integer, *optional*
                Number of used spectral bins; if given `log` is set to ``False``;
                integers below the minimum of 3 induce an automatic setting;
                by default no binning is done (default: None).
            binbounds : {list, array}, *optional*
                User specific inner boundaries of the bins, which are preferred
                over the above parameters; by default no binning is done
                (default: None).            vmin : {scalar, list, ndarray, field}, *optional*
                Lower limit of the uniform distribution if ``random == "uni"``
                (default: 0).
820

Marco Selig's avatar
Marco Selig committed
821
        """
Ultimanet's avatar
Ultimanet committed
822
        raise NotImplementedError(about._errors.cstring("ERROR: no generic instance method 'calc_power'."))
Marco Selig's avatar
Marco Selig committed
823
824
825

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Ultimanet's avatar
Ultimanet committed
826
    def get_plot(self,x,**kwargs):
Marco Selig's avatar
Marco Selig committed
827
        """
Ultimanet's avatar
Ultimanet committed
828
829
            Creates a plot of field values according to the specifications
            given by the parameters.
830
831
832

            Parameters
            ----------
Ultimanet's avatar
Ultimanet committed
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
            x : numpy.ndarray
                Array containing the field values.

            Returns
            -------
            None

            Other parameters
            ----------------
            title : string, *optional*
                Title of the plot (default: "").
            vmin : float, *optional*
                Minimum value to be displayed (default: ``min(x)``).
            vmax : float, *optional*
                Maximum value to be displayed (default: ``max(x)``).
            power : bool, *optional*
                Whether to plot the power contained in the field or the field
                values themselves (default: False).
            unit : string, *optional*
                Unit of the field values (default: "").
            norm : string, *optional*
                Scaling of the field values before plotting (default: None).
            cmap : matplotlib.colors.LinearSegmentedColormap, *optional*
                Color map to be used for two-dimensional plots (default: None).
            cbar : bool, *optional*
                Whether to show the color bar or not (default: True).
            other : {single object, tuple of objects}, *optional*
                Object or tuple of objects to be added, where objects can be
                scalars, arrays, or fields (default: None).
            legend : bool, *optional*
                Whether to show the legend or not (default: False).
            mono : bool, *optional*
                Whether to plot the monopole or not (default: True).
            save : string, *optional*
                Valid file name where the figure is to be stored, by default
                the figure is not saved (default: False).
            error : {float, numpy.ndarray, nifty.field}, *optional*
                Object indicating some confidence interval to be plotted
                (default: None).
            kindex : numpy.ndarray, *optional*
                Scale corresponding to each band in the power spectrum
                (default: None).
            codomain : nifty.space, *optional*
                A compatible codomain for power indexing (default: None).
            log : bool, *optional*
                Flag specifying if the spectral binning is performed on logarithmic
879
880
881
                scale or not; if set, the number of used bins is set
                automatically (if not given otherwise); by default no binning
                is done (default: None).
Ultimanet's avatar
Ultimanet committed
882
883
            nbin : integer, *optional*
                Number of used spectral bins; if given `log` is set to ``False``;
884
                integers below the minimum of 3 induce an automatic setting;
885
                by default no binning is done (default: None).
Ultimanet's avatar
Ultimanet committed
886
            binbounds : {list, array}, *optional*
887
888
                User specific inner boundaries of the bins, which are preferred
                over the above parameters; by default no binning is done
Ultimanet's avatar
Ultimanet committed
889
890
891
892
893
                (default: None).            vmin : {scalar, list, ndarray, field}, *optional*
                Lower limit of the uniform distribution if ``random == "uni"``
                (default: 0).
            iter : int, *optional*
                Number of iterations (default: 0).
Marco Selig's avatar
Marco Selig committed
894
895

        """
Ultimanet's avatar
Ultimanet committed
896
        raise NotImplementedError(about._errors.cstring("ERROR: no generic instance method 'get_plot'."))
Marco Selig's avatar
Marco Selig committed
897

Ultimanet's avatar
Ultimanet committed
898
    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Marco Selig's avatar
Marco Selig committed
899

Ultimanet's avatar
Ultimanet committed
900
901
    def __repr__(self):
        return "<nifty_core.space>"
Marco Selig's avatar
Marco Selig committed
902

Ultimanet's avatar
Ultimanet committed
903
904
    def __str__(self):
        return "nifty_core.space instance\n- para     = "+str(self.para)+"\n- datatype = numpy."+str(np.result_type(self.datatype))
Marco Selig's avatar
Marco Selig committed
905

Ultimanet's avatar
Ultimanet committed
906
    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Marco Selig's avatar
Marco Selig committed
907

Ultimanet's avatar
Ultimanet committed
908
    def __len__(self):
909
        return int(self.get_dim(split=False))
Marco Selig's avatar
Marco Selig committed
910

911
    ## _identiftier returns an object which contains all information needed 
Ultimanet's avatar
Ultimanet committed
912
913
    ## to uniquely idetnify a space. It returns a (immutable) tuple which therefore
    ## can be compored. 
914
    def _identifier(self):
Ultimanet's avatar
Ultimanet committed
915
        return tuple(sorted(vars(self).items()))
Marco Selig's avatar
Marco Selig committed
916

Ultimanet's avatar
Ultimanet committed
917
    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Marco Selig's avatar
Marco Selig committed
918

Ultimanet's avatar
Ultimanet committed
919
920
921
922
923
924
    def _meta_vars(self): ## > captures all nonstandard properties
        mars = np.array([ii[1] for ii in vars(self).iteritems() if ii[0] not in ["para","datatype","discrete","vol","power_indices"]],dtype=np.object)
        if(np.size(mars)==0):
            return None
        else:
            return mars
Marco Selig's avatar
Marco Selig committed
925

Ultima's avatar
Ultima committed
926
    def __eq__(self, x): ## __eq__ : self == x
927
928
929
930
        if isinstance(x, type(self)):
            return self._identifier() == x._identifier()
        else:
            return False
Ultima's avatar
Ultima committed
931
932
933
    
    def __ne__(self, x):
        return not self.__eq__(x)
Marco Selig's avatar
Marco Selig committed
934

Ultimanet's avatar
Ultimanet committed
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
    def __lt__(self,x): ## __lt__ : self < x
        if(isinstance(x,space)):
            if(not isinstance(x,type(self)))or(np.size(self.para)!=np.size(x.para))or(np.size(self.vol)!=np.size(x.vol)):
                raise ValueError(about._errors.cstring("ERROR: incomparable spaces."))
            elif(self.discrete==x.discrete): ## data types are ignored
                for ii in xrange(np.size(self.para)):
                    if(self.para[ii]<x.para[ii]):
                        return True
                    elif(self.para[ii]>x.para[ii]):
                        return False
                for ii in xrange(np.size(self.vol)):
                    if(self.vol[ii]<x.vol[ii]):
                        return True
                    elif(self.vol[ii]>x.vol[ii]):
                        return False
                s_mars = self._meta_vars()
                x_mars = x._meta_vars()
                for ii in xrange(np.size(s_mars)):
                    if(np.all(s_mars[ii]<x_mars[ii])):
                        return True
                    elif(np.any(s_mars[ii]>x_mars[ii])):
                        break
        return False
Marco Selig's avatar
Marco Selig committed
958

Ultimanet's avatar
Ultimanet committed
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
    def __le__(self,x): ## __le__ : self <= x
        if(isinstance(x,space)):
            if(not isinstance(x,type(self)))or(np.size(self.para)!=np.size(x.para))or(np.size(self.vol)!=np.size(x.vol)):
                raise ValueError(about._errors.cstring("ERROR: incomparable spaces."))
            elif(self.discrete==x.discrete): ## data types are ignored
                for ii in xrange(np.size(self.para)):
                    if(self.para[ii]<x.para[ii]):
                        return True
                    if(self.para[ii]>x.para[ii]):
                        return False
                for ii in xrange(np.size(self.vol)):
                    if(self.vol[ii]<x.vol[ii]):
                        return True
                    if(self.vol[ii]>x.vol[ii]):
                        return False
                s_mars = self._meta_vars()
                x_mars = x._meta_vars()
                for ii in xrange(np.size(s_mars)):
                    if(np.all(s_mars[ii]<x_mars[ii])):
                        return True
                    elif(np.any(s_mars[ii]>x_mars[ii])):
                        return False
                return True
        return False
Marco Selig's avatar
Marco Selig committed
983

Ultimanet's avatar
Ultimanet committed
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
    def __gt__(self,x): ## __gt__ : self > x
        if(isinstance(x,space)):
            if(not isinstance(x,type(self)))or(np.size(self.para)!=np.size(x.para))or(np.size(self.vol)!=np.size(x.vol)):
                raise ValueError(about._errors.cstring("ERROR: incomparable spaces."))
            elif(self.discrete==x.discrete): ## data types are ignored
                for ii in xrange(np.size(self.para)):
                    if(self.para[ii]>x.para[ii]):
                        return True
                    elif(self.para[ii]<x.para[ii]):
                        break
                for ii in xrange(np.size(self.vol)):
                    if(self.vol[ii]>x.vol[ii]):
                        return True
                    elif(self.vol[ii]<x.vol[ii]):
                        break
                s_mars = self._meta_vars()
                x_mars = x._meta_vars()
                for ii in xrange(np.size(s_mars)):
                    if(np.all(s_mars[ii]>x_mars[ii])):
                        return True
                    elif(np.any(s_mars[ii]<x_mars[ii])):
                        break
        return False
Marco Selig's avatar
Marco Selig committed
1007

Ultimanet's avatar
Ultimanet committed
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
    def __ge__(self,x): ## __ge__ : self >= x
        if(isinstance(x,space)):
            if(not isinstance(x,type(self)))or(np.size(self.para)!=np.size(x.para))or(np.size(self.vol)!=np.size(x.vol)):
                raise ValueError(about._errors.cstring("ERROR: incomparable spaces."))
            elif(self.discrete==x.discrete): ## data types are ignored
                for ii in xrange(np.size(self.para)):
                    if(self.para[ii]>x.para[ii]):
                        return True
                    if(self.para[ii]<x.para[ii]):
                        return False
                for ii in xrange(np.size(self.vol)):
                    if(self.vol[ii]>x.vol[ii]):
                        return True
                    if(self.vol[ii]<x.vol[ii]):
                        return False
                s_mars = self._meta_vars()
                x_mars = x._meta_vars()
                for ii in xrange(np.size(s_mars)):
                    if(np.all(s_mars[ii]>x_mars[ii])):
                        return True
                    elif(np.any(s_mars[ii]<x_mars[ii])):
                        return False
                return True
        return False
Marco Selig's avatar
Marco Selig committed
1032

Ultimanet's avatar
Ultimanet committed
1033
##=============================================================================
Marco Selig's avatar
Marco Selig committed
1034
1035
1036



Ultimanet's avatar
Ultimanet committed
1037
##-----------------------------------------------------------------------------
Marco Selig's avatar
Marco Selig committed
1038

Ultimanet's avatar
Ultimanet committed
1039
class point_space(space):
Marco Selig's avatar
Marco Selig committed
1040
    """
Ultimanet's avatar
Ultimanet committed
1041
1042
1043
1044
1045
1046
1047
        ..                            __             __
        ..                          /__/           /  /_
        ..      ______    ______    __   __ ___   /   _/
        ..    /   _   | /   _   | /  / /   _   | /  /
        ..   /  /_/  / /  /_/  / /  / /  / /  / /  /_
        ..  /   ____/  \______/ /__/ /__/ /__/  \___/  space class
        .. /__/
Marco Selig's avatar
Marco Selig committed
1048

Ultimanet's avatar
Ultimanet committed
1049
        NIFTY subclass for unstructured spaces.
Marco Selig's avatar
Marco Selig committed
1050

Ultimanet's avatar
Ultimanet committed
1051
1052
        Unstructured spaces are lists of values without any geometrical
        information.
Marco Selig's avatar
Marco Selig committed
1053
1054
1055

        Parameters
        ----------
Ultimanet's avatar
Ultimanet committed
1056
1057
1058
1059
        num : int
            Number of points.
        datatype : numpy.dtype, *optional*
            Data type of the field values (default: None).
Marco Selig's avatar
Marco Selig committed
1060

Ultimanet's avatar
Ultimanet committed
1061
        Attributes
Marco Selig's avatar
Marco Selig committed
1062
        ----------
Ultimanet's avatar
Ultimanet committed
1063
1064
1065
1066
1067
1068
1069
1070
1071
        para : numpy.ndarray
            Array containing the number of points.
        datatype : numpy.dtype
            Data type of the field values.
        discrete : bool
            Parameter captioning the fact that a :py:class:`point_space` is
            always discrete.
        vol : numpy.ndarray
            Pixel volume of the :py:class:`point_space`, which is always 1.
Marco Selig's avatar
Marco Selig committed
1072
    """
1073
    def __init__(self, num, datatype=None, datamodel='d2o'):
Ultimanet's avatar
Ultimanet committed
1074
1075
        """
            Sets the attributes for a point_space class instance.
Marco Selig's avatar
Marco Selig committed
1076

Ultimanet's avatar
Ultimanet committed
1077
1078
1079
1080
1081
1082
            Parameters
            ----------
            num : int
                Number of points.
            datatype : numpy.dtype, *optional*
                Data type of the field values (default: numpy.float64).
Marco Selig's avatar
Marco Selig committed
1083

Ultimanet's avatar
Ultimanet committed
1084
1085
1086
1087
1088
1089
1090
            Returns
            -------
            None.
        """
        self.paradict = point_space_paradict(num=num)       
        
        ## check datatype
1091
        if (datatype is None):
Ultimanet's avatar
Ultimanet committed
1092
            datatype = np.float64
1093
1094
        elif (datatype not in [np.bool_,
                              np.int8, 
1095
1096
1097
1098
1099
1100
1101
1102
                              np.int16, 
                              np.int32,
                              np.int64,
                              np.float16,
                              np.float32,
                              np.float64,
                              np.complex64,
                              np.complex128]):
Ultimanet's avatar
Ultimanet committed
1103
1104
1105
            about.warnings.cprint("WARNING: data type set to default.")
            datatype = np.float64
        self.datatype = datatype
1106
1107
1108
1109
1110
1111
1112
1113
        
        if datamodel not in ['np', 'd2o']:
            about.warnings.cprint("WARNING: datamodel set to default.")
            self.datamodel = 'd2o'
        else:
            self.datamodel = datamodel
                
        
Ultimanet's avatar
Ultimanet committed
1114
        self.discrete = True
1115
        self.vol = np.real(np.array([1], dtype=self.datatype))
Marco Selig's avatar
Marco Selig committed
1116

1117

Ultimanet's avatar
Ultimanet committed
1118
1119
1120
1121
1122
1123
1124
1125
    @property
    def para(self):
        temp = np.array([self.paradict['num']], dtype=int)
        return temp
    
    @para.setter
    def para(self, x):
        self.paradict['num'] = x
1126
1127
1128
1129
1130
1131
1132
     
     
    def copy(self):
        return point_space(num = self.paradict['num'],
                           datatype = self.datatype,
                           datamodel = self.datamodel)
     
Ultimanet's avatar
Ultimanet committed
1133
1134
1135
1136
    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    def getitem(self, data, key):
        return data[key]
        
Marco Selig's avatar
Marco Selig committed
1137

Ultimanet's avatar
Ultimanet committed
1138
1139
    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    def setitem(self, data, update, key):
1140
        data[key] = update
Marco Selig's avatar
Marco Selig committed
1141

Ultimanet's avatar
Ultimanet committed
1142
1143
    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    def apply_scalar_function(self, x, function, inplace=False):
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
        if self.datamodel == 'np':
            if inplace == False:        
                try: 
                    return function(x)
                except:
                    return np.vectorize(function)(x)
            else:
                try:
                    x[:] = function(x)
                except:
                    x[:] = np.vectorize(function)(x)
                return x
            
        elif self.datamodel == 'd2o':
            return x.apply_scalar_function(function, inplace=inplace)
Ultimanet's avatar
Ultimanet committed
1159
        else:
1160
1161
1162
            raise NotImplementedError(about._errors.cstring(
                "ERROR: function is not implemented for given datamodel."))

Ultimanet's avatar
Ultimanet committed
1163
1164
1165
1166
1167
1168
1169
1170
1171
    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++          
    
    
    def unary_operation(self, x, op='None', **kwargs):
        """
        x must be a numpy array which is compatible with the space!
        Valid operations are
        
        """
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
        if self.datamodel == 'np':                                
            def _argmin(z, **kwargs):
                ind = np.argmin(z, **kwargs)
                if np.isscalar(ind):
                    ind = np.unravel_index(ind, z.shape, order='C')
                    if(len(ind)==1):
                        return ind[0]
                return ind         
    
            def _argmax(z, **kwargs):
                ind = np.argmax(z, **kwargs)
                if np.isscalar(ind):
                    ind = np.unravel_index(ind, z.shape, order='C')
                    if(len(ind)==1):
                        return ind[0]
                return ind         
            
            
            translation = {"pos" : lambda y: getattr(y, '__pos__')(),
                            "neg" : lambda y: getattr(y, '__neg__')(),
                            "abs" : lambda y: getattr(y, '__abs__')(),
                            "nanmin" : np.nanmin,  
                            "min" : np.amin,
                            "nanmax" : np.nanmax,
                            "max" : np.amax,
                            "med" : np.median,
                            "mean" : np.mean,
                            "std" : np.std,
                            "var" : np.var,
                            "argmin" : _argmin,
                            "argmin_flat" : np.argmin,
                            "argmax" : _argmax, 
                            "argmax_flat" : np.argmax,
                            "conjugate" : np.conjugate,
                            "sum" : np.sum,
                            "prod" : np.prod,
1208
1209
                            "unique" : np.unique,
                            "copy" : np.copy,
1210
1211
1212
1213
                            "None" : lambda y: y}

        elif self.datamodel == 'd2o':
            translation = {"pos" : lambda y: getattr(y, '__pos__')(),
Ultimanet's avatar
Ultimanet committed
1214
1215
                        "neg" : lambda y: getattr(y, '__neg__')(),
                        "abs" : lambda y: getattr(y, '__abs__')(),
1216
1217
1218
1219
1220
1221
1222
1223
                        "nanmin" : lambda y: getattr(y, 'nanmin')(),
                        "min" : lambda y: getattr(y, 'amin')(),
                        "nanmax" : lambda y: getattr(y, 'nanmax')(),
                        "max" : lambda y: getattr(y, 'amax')(),
                        "median" : lambda y: getattr(y, 'median')(),
                        "mean" : lambda y: getattr(y, 'mean')(),
                        "std" : lambda y: getattr(y, 'std')(),
                        "var" : lambda y: getattr(y, 'var')(),
Ultima's avatar
Ultima committed
1224
1225
1226
1227
                        "argmin" : lambda y: getattr(y, 'argmin_nonflat')(),
                        "argmin_flat" : lambda y: getattr(y, 'argmin')(),
                        "argmax" : lambda y: getattr(y, 'argmax_nonflat')(),
                        "argmax_flat" : lambda y: getattr(y, 'argmax')(),
1228
1229
1230
                        "conjugate" : lambda y: getattr(y, 'conjugate')(),
                        "sum" : lambda y: getattr(y, 'sum')(),
                        "prod" : lambda y: getattr(y, 'prod')(),
1231
1232
                        "unique" : lambda y: getattr(y, 'unique')(),
                        "copy" : lambda y: getattr(y, 'copy')(),
Ultimanet's avatar
Ultimanet committed
1233
                        "None" : lambda y: y}
1234
1235
1236
        else:
            raise NotImplementedError(about._errors.cstring(
                "ERROR: function is not implemented for given datamodel."))
Ultimanet's avatar
Ultimanet committed
1237
1238
                
        return translation[op](x, **kwargs)      
Marco Selig's avatar
Marco Selig committed
1239

Ultimanet's avatar
Ultimanet committed
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++            
    def binary_operation(self, x, y, op='None', cast=0):
        
        translation = {"add" : lambda z: getattr(z, '__add__'),
                        "radd" : lambda z: getattr(z, '__radd__'),
                        "iadd" : lambda z: getattr(z, '__iadd__'),
                        "sub" : lambda z: getattr(z, '__sub__'),
                        "rsub" : lambda z: getattr(z, '__rsub__'),
                        "isub" : lambda z: getattr(z, '__isub__'),
                        "mul" : lambda z: getattr(z, '__mul__'),
                        "rmul" : lambda z: getattr(z, '__rmul__'),
                        "imul" : lambda z: getattr(z, '__imul__'),
                        "div" : lambda z: getattr(z, '__div__'),
                        "rdiv" : lambda z: getattr(z, '__rdiv__'),
                        "idiv" : lambda z: getattr(z, '__idiv__'),
                        "pow" : lambda z: getattr(z, '__pow__'),
                        "rpow" : lambda z: getattr(z, '__rpow__'),
                        "ipow" : lambda z: getattr(z, '__ipow__'),
1258
1259
1260
1261
1262
1263
                        "ne" : lambda z: getattr(z, '__ne__'),
                        "lt" : lambda z: getattr(z, '__lt__'),
                        "le" : lambda z: getattr(z, '__le__'),
                        "eq" : lambda z: getattr(z, '__eq__'),
                        "ge" : lambda z: getattr(z, '__ge__'),
                        "gt" : lambda z: getattr(z, '__gt__'),
Ultimanet's avatar
Ultimanet committed
1264
1265
1266
1267
1268
1269
1270
1271
                        "None" : lambda z: lambda u: u}
        
        if (cast & 1) != 0:
            x = self.cast(x)
        if (cast & 2) != 0:
            y = self.cast(y)        
        
        return translation[op](x)(y)
Marco Selig's avatar
Marco Selig committed
1272

Ultimanet's avatar
Ultimanet committed
1273
1274
1275
1276
    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++            
    def norm(self, x, q=2):
        """
            Computes the Lq-norm of field values.
Marco Selig's avatar
Marco Selig committed
1277

Ultimanet's avatar
Ultimanet committed
1278
1279
1280
1281
1282
1283
            Parameters
            ----------
            x : np.ndarray 
                The data array 
            q : scalar
                Parameter q of the Lq-norm (default: 2).
Marco Selig's avatar
Marco Selig committed
1284

Ultimanet's avatar
Ultimanet committed
1285
1286
1287
1288
            Returns
            -------
            norm : scalar
                The Lq-norm of the field values.
Marco Selig's avatar
Marco Selig committed
1289

Ultimanet's avatar
Ultimanet committed
1290
        """
Marco Selig's avatar
Marco Selig committed
1291

Ultimanet's avatar
Ultimanet committed
1292
        
1293
        if q == 2:
Ultimanet's avatar
Ultimanet committed
1294
1295
1296
1297
1298
1299
1300
            result = self.calc_dot(x,x)
        else:
            y = x**(q-1)        
            result = self.calc_dot(x,y)
        
        result = result**(1./q)
        return result 
Marco Selig's avatar
Marco Selig committed
1301
1302
1303



Ultimanet's avatar
Ultimanet committed
1304
    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1305
    def get_num(self):
Ultimanet's avatar
Ultimanet committed
1306
1307
        """
            Returns the number of points.
Marco Selig's avatar
Marco Selig committed
1308

Ultimanet's avatar
Ultimanet committed
1309
1310
1311
1312
1313
            Returns
            -------
            num : int
                Number of points.
        """
1314
        return np.prod(self.get_shape())
Marco Selig's avatar
Marco Selig committed
1315

1316
    def get_shape(self):
Ultimanet's avatar
Ultimanet committed
1317
        return np.array([self.paradict['num']])
Marco Selig's avatar
Marco Selig committed
1318

Ultimanet's avatar
Ultimanet committed
1319
        
1320
    def get_dim(self, split=False):
Ultimanet's avatar
Ultimanet committed
1321
1322
        """
            Computes the dimension of the space, i.e.\  the number of points.
Marco Selig's avatar
Marco Selig committed
1323

Ultimanet's avatar
Ultimanet committed
1324
1325
1326
1327
1328
            Parameters
            ----------
            split : bool, *optional*
                Whether to return the dimension as an array with one component
                or as a scalar (default: False).
Marco Selig's avatar
Marco Selig committed
1329

Ultimanet's avatar
Ultimanet committed
1330
1331
1332
1333
1334
1335
            Returns
            -------
            dim : {int, numpy.ndarray}
                Dimension(s) of the space.
        """
        ## dim = num
1336
1337
1338
1339
        if split==True:
            about.warnings.cflush("WARNING: split keyword is  deprecated!"+\
                                "Please use self.get_shape() in future!")
            return self.get_shape()
Ultimanet's avatar
Ultimanet committed
1340
</