yango.py 3.07 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2018 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.

from __future__ import division
from .minimizer import Minimizer
from .line_search_strong_wolfe import LineSearchStrongWolfe


class Yango(Minimizer):
    """ Nonlinear conjugate gradient using curvature
Reimar H Leike's avatar
Reimar H Leike committed
26 27 28 29 30
    The YANGO (Yet Another Nonlinear conjugate Gradient Optimizer)
    uses the curvature to make estimates about suitable descent
    directions. It takes the step that lets it go directly to
    the second order minimum in the subspace spanned by the last
    descent direction and the new gradient.
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

    Parameters
    ----------
    controller : IterationController
        Object that decides when to terminate the minimization.

    Notes
    -----
    No restarting procedure has been implemented yet.

    References
    ----------
    """

    def __init__(self, controller, line_searcher = LineSearchStrongWolfe(c2=0.1)):
        self._controller = controller
        self._line_searcher = line_searcher

    def __call__(self, energy):
        controller = self._controller
        status = controller.start(energy)
        if status != controller.CONTINUE:
            return energy, status
        f_k_minus_1 = None

        p = -energy.gradient
        A_k = energy.curvature
58 59 60 61 62
        energy, success = self._line_searcher.perform_line_search(     
                energy, p.vdot(p)/(p.vdot(A_k(p)))*p, f_k_minus_1)
        if not success:
            return energy, controller.ERROR
        A_k = energy.curvature
63
        while True:
Reimar H Leike's avatar
Reimar H Leike committed
64
            r = -energy.gradient
65
            f_k = energy.value
Reimar H Leike's avatar
Reimar H Leike committed
66 67 68 69 70 71 72 73 74 75 76 77
            rAr = r.vdot(A_k(r))
            pAp = p.vdot(A_k(p))
            rAp = r.vdot(A_k(p))
            rp = r.vdot(p)
            rr = r.vdot(r)
            det = pAp*rAr-(rAp)**2
            if det <= 0:
                print("negative determinant",det)
                return energy, status
            a = (rAr*rp - rAp*rr)/det
            b = (pAp*rr - rAp*rp)/det
            p = a/b*p+r
78 79 80 81
            energy, success = self._line_searcher.perform_line_search(     
                energy, p*b, f_k_minus_1)
            if not success:
                return energy, controller.ERROR
Reimar H Leike's avatar
Reimar H Leike committed
82
            f_k_minus_1 = f_k
83
            status = self._controller.check(energy)
84 85 86
            if status != controller.CONTINUE:
                return energy, status
            A_k = energy.curvature