rg_space.py 6.43 KB
Newer Older
1
2
3
4
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
5
#
6
7
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
8
9
10
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
11
# You should have received a copy of the GNU General Public License
12
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
14
15
16
17
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
Marco Selig's avatar
Marco Selig committed
18
19

from __future__ import division
Martin Reinecke's avatar
Martin Reinecke committed
20
from builtins import range
Martin Reinecke's avatar
Martin Reinecke committed
21
from functools import reduce
Marco Selig's avatar
Marco Selig committed
22
import numpy as np
Martin Reinecke's avatar
Martin Reinecke committed
23
from .space import Space
csongor's avatar
csongor committed
24

Marco Selig's avatar
Marco Selig committed
25

Theo Steininger's avatar
Theo Steininger committed
26
class RGSpace(Space):
Martin Reinecke's avatar
Martin Reinecke committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
    """NIFTY subclass for spaces of regular Cartesian grids.

    Parameters
    ----------
    shape : {int, numpy.ndarray}
        Number of grid points or numbers of gridpoints along each axis.
    distances : {float, numpy.ndarray}, *optional*
        Distance between two grid points along each axis
        (default: None).
        If distances==None:
            if harmonic==True, all distances will be set to 1
            if harmonic==False, the distance along each axis will be
              set to the inverse of the number of points along that
              axis.
    harmonic : bool, *optional*
    Whether the space represents a grid in position or harmonic space.
        (default: False).
Marco Selig's avatar
Marco Selig committed
44
    """
45

Martin Reinecke's avatar
Martin Reinecke committed
46
    def __init__(self, shape, distances=None, harmonic=False):
Martin Reinecke's avatar
Martin Reinecke committed
47
        super(RGSpace, self).__init__()
48
        self._needed_for_hash += ["_distances", "_shape", "_harmonic"]
49

Martin Reinecke's avatar
Martin Reinecke committed
50
        self._harmonic = bool(harmonic)
51
52
        self._shape = self._parse_shape(shape)
        self._distances = self._parse_distances(distances)
53
        self._dvol = float(reduce(lambda x, y: x*y, self._distances))
Martin Reinecke's avatar
Martin Reinecke committed
54
        self._dim = int(reduce(lambda x, y: x*y, self._shape))
Marco Selig's avatar
Marco Selig committed
55

56
    def __repr__(self):
Martin Reinecke's avatar
Martin Reinecke committed
57
58
        return ("RGSpace(shape=%r, distances=%r, harmonic=%r)"
                % (self.shape, self.distances, self.harmonic))
59

60
61
62
63
64
65
66
67
68
69
    @property
    def harmonic(self):
        return self._harmonic

    @property
    def shape(self):
        return self._shape

    @property
    def dim(self):
Martin Reinecke's avatar
Martin Reinecke committed
70
        return self._dim
71

72
73
    def scalar_dvol(self):
        return self._dvol
74

75
    def get_k_length_array(self):
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
76
77
        if (not self.harmonic):
            raise NotImplementedError
Martin Reinecke's avatar
Martin Reinecke committed
78
79
80
81
82
83
84
85
86
87
88
        res = np.arange(self.shape[0], dtype=np.float64)
        res = np.minimum(res, self.shape[0]-res)*self.distances[0]
        if len(self.shape) == 1:
            return res
        res *= res
        for i in range(1, len(self.shape)):
            tmp = np.arange(self.shape[i], dtype=np.float64)
            tmp = np.minimum(tmp, self.shape[i]-tmp)*self.distances[i]
            tmp *= tmp
            res = np.add.outer(res, tmp)
        return np.sqrt(res)
theos's avatar
theos committed
89

90
    def get_unique_k_lengths(self):
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
91
92
        if (not self.harmonic):
            raise NotImplementedError
Martin Reinecke's avatar
Martin Reinecke committed
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
        dimensions = len(self.shape)
        if dimensions == 1:  # extra easy
            maxdist = self.shape[0]//2
            return np.arange(maxdist+1, dtype=np.float64) * self.distances[0]
        if np.all(self.distances == self.distances[0]):  # shortcut
            maxdist = np.asarray(self.shape)//2
            tmp = np.sum(maxdist*maxdist)
            tmp = np.zeros(tmp+1, dtype=np.bool)
            t2 = np.arange(maxdist[0]+1, dtype=np.int64)
            t2 *= t2
            for i in range(1, dimensions):
                t3 = np.arange(maxdist[i]+1, dtype=np.int64)
                t3 *= t3
                t2 = np.add.outer(t2, t3)
            tmp[t2] = True
            return np.sqrt(np.nonzero(tmp)[0])*self.distances[0]
        else:  # do it the hard way
110
            tmp = np.unique(self.get_k_length_array())  # expensive!
Martin Reinecke's avatar
Martin Reinecke committed
111
112
113
114
115
116
117
            tol = 1e-12*tmp[-1]
            # remove all points that are closer than tol to their right
            # neighbors.
            # I'm appending the last value*2 to the array to treat the
            # rightmost point correctly.
            return tmp[np.diff(np.r_[tmp, 2*tmp[-1]]) > tol]

Martin Reinecke's avatar
Martin Reinecke committed
118
119
120
121
122
123
124
    @staticmethod
    def _kernel(x, sigma):
        tmp = x*x
        tmp *= -2.*np.pi*np.pi*sigma*sigma
        np.exp(tmp, out=tmp)
        return tmp

125
    def get_fft_smoothing_kernel_function(self, sigma):
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
126
127
        if (not self.harmonic):
            raise NotImplementedError
Martin Reinecke's avatar
Martin Reinecke committed
128
        return lambda x: self._kernel(x, sigma)
theos's avatar
theos committed
129

Martin Reinecke's avatar
Martin Reinecke committed
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
    def get_default_codomain(self):
        distances = 1. / (np.array(self.shape)*np.array(self.distances))
        return RGSpace(self.shape, distances, not self.harmonic)

    def check_codomain(self, codomain):
        if not isinstance(codomain, RGSpace):
            raise TypeError("domain is not a RGSpace")

        if self.shape != codomain.shape:
            raise AttributeError("The shapes of domain and codomain must be "
                                 "identical.")

        if self.harmonic == codomain.harmonic:
            raise AttributeError("domain.harmonic and codomain.harmonic must "
                                 "not be the same.")

        # Check if the distances match, i.e. dist' = 1 / (num * dist)
        if not np.all(
            np.absolute(np.array(self.shape) *
                        np.array(self.distances) *
Martin Reinecke's avatar
Martin Reinecke committed
150
                        np.array(codomain.distances)-1) < 1e-7):
Martin Reinecke's avatar
Martin Reinecke committed
151
152
153
            raise AttributeError("The grid-distances of domain and codomain "
                                 "do not match.")

154
155
    @property
    def distances(self):
Theo Steininger's avatar
Theo Steininger committed
156
157
158
        """Distance between two grid points along each axis. It is a tuple
        of positive floating point numbers with the n-th entry giving the
        distances of grid points along the n-th dimension.
159
        """
160
161
162
163
        return self._distances

    def _parse_shape(self, shape):
        if np.isscalar(shape):
Martin Reinecke's avatar
Martin Reinecke committed
164
165
            return (shape,)
        return tuple(np.array(shape, dtype=np.int))
166
167
168
169

    def _parse_distances(self, distances):
        if distances is None:
            if self.harmonic:
Martin Reinecke's avatar
Martin Reinecke committed
170
                temp = np.ones_like(self.shape, dtype=np.float64)
171
            else:
Martin Reinecke's avatar
Martin Reinecke committed
172
                temp = 1./np.array(self.shape, dtype=np.float64)
173
        else:
Martin Reinecke's avatar
Martin Reinecke committed
174
            temp = np.empty(len(self.shape), dtype=np.float64)
175
176
            temp[:] = distances
        return tuple(temp)