lm_space.py 4.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
14
15
16
17
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
18

csongor's avatar
csongor committed
19
20
from __future__ import division
import numpy as np
Martin Reinecke's avatar
Martin Reinecke committed
21
from .space import Space
theos's avatar
theos committed
22

csongor's avatar
csongor committed
23

Theo Steininger's avatar
Theo Steininger committed
24
class LMSpace(Space):
Martin Reinecke's avatar
Martin Reinecke committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
    """NIFTY subclass for spherical harmonics components, for representations
    of fields on the two-sphere.

    Parameters
    ----------
    lmax : int
        The maximum :math:`l` value of any spherical harmonics
        :math:`Y_{lm}` that is represented in this Space.

    See Also
    --------
    HPSpace : A class for the HEALPix discretization of the sphere [#]_.
    GLSpace : A class for the Gauss-Legendre discretization of the
        sphere [#]_.

    Raises
    ------
    ValueError
        If given lmax is negative.

    Notes
    -----
        This implementation implicitly sets the mmax parameter to lmax.

    References
    ----------
    .. [#] K.M. Gorski et al., 2005, "HEALPix: A Framework for
           High-Resolution Discretization and Fast Analysis of Data
           Distributed on the Sphere", *ApJ* 622..759G.
    .. [#] M. Reinecke and D. Sverre Seljebotn, 2013, "Libsharp - spherical
           harmonic transforms revisited";
           `arXiv:1303.4945 <http://www.arxiv.org/abs/1303.4945>`_
csongor's avatar
csongor committed
57
58
    """

Martin Reinecke's avatar
Martin Reinecke committed
59
60
    def __init__(self, lmax):
        super(LMSpace, self).__init__()
61
        self._needed_for_hash += ["_lmax"]
csongor's avatar
csongor committed
62
        self._lmax = self._parse_lmax(lmax)
csongor's avatar
csongor committed
63

64
65
66
    def __repr__(self):
        return ("LMSpace(lmax=%r)" % self.lmax)

csongor's avatar
csongor committed
67
68
69
    @property
    def harmonic(self):
        return True
csongor's avatar
csongor committed
70
71

    @property
72
73
    def shape(self):
        return (self.dim, )
csongor's avatar
csongor committed
74
75

    @property
76
77
    def dim(self):
        l = self.lmax
78
        # the LMSpace consists of the full triangle (including -m's!),
theos's avatar
theos committed
79
80
        # minus two little triangles if mmax < lmax
        # dim = (((2*(l+1)-1)+1)**2/4 - 2 * (l-m)(l-m+1)/2
81
82
        # dim = np.int((l+1)**2 - (l-m)*(l-m+1.))
        # We fix l == m
83
        return np.int((l+1)*(l+1))
csongor's avatar
csongor committed
84

85
    def scalar_dvol(self):
86
        return 1.
csongor's avatar
csongor committed
87

88
    def get_k_length_array(self):
Martin Reinecke's avatar
stage1    
Martin Reinecke committed
89
90
91
92
93
94
95
96
97
98
99
        lmax = self.lmax
        ldist = np.empty((self.dim,), dtype=np.float64)
        ldist[0:lmax+1] = np.arange(lmax+1, dtype=np.float64)
        tmp = np.empty((2*lmax+2), dtype=np.float64)
        tmp[0::2] = np.arange(lmax+1)
        tmp[1::2] = np.arange(lmax+1)
        idx = lmax+1
        for l in range(1, lmax+1):
            ldist[idx:idx+2*(lmax+1-l)] = tmp[2*l:]
            idx += 2*(lmax+1-l)
        return ldist
100

101
    def get_unique_k_lengths(self):
Martin Reinecke's avatar
Martin Reinecke committed
102
103
        return np.arange(self.lmax+1, dtype=np.float64)

Martin Reinecke's avatar
Martin Reinecke committed
104
105
106
107
108
109
110
111
    @staticmethod
    def _kernel(x, sigma):
        res = x+1.
        res *= x
        res *= -0.5*sigma*sigma
        np.exp(res, out=res)
        return res

112
    def get_fft_smoothing_kernel_function(self, sigma):
Theo Steininger's avatar
Theo Steininger committed
113
114
115
        # cf. "All-sky convolution for polarimetry experiments"
        # by Challinor et al.
        # http://arxiv.org/abs/astro-ph/0008228
Martin Reinecke's avatar
Martin Reinecke committed
116
        return lambda x: self._kernel(x, sigma)
117

csongor's avatar
csongor committed
118
119
    @property
    def lmax(self):
Martin Reinecke's avatar
Martin Reinecke committed
120
        """ Returns the maximum :math:`l` value of any spherical harmonic
Theo Steininger's avatar
Theo Steininger committed
121
        :math:`Y_{lm}` that is represented in this Space.
122
        """
csongor's avatar
csongor committed
123
124
125
126
        return self._lmax

    @property
    def mmax(self):
Martin Reinecke's avatar
Martin Reinecke committed
127
128
129
        """ Returns the maximum :math:`m` value of any spherical harmonic
        :math:`Y_{lm}` that is represented in this Space.
        Currently this is identical to lmax.
130
        """
131
        return self._lmax
csongor's avatar
csongor committed
132
133
134

    def _parse_lmax(self, lmax):
        lmax = np.int(lmax)
135
136
        if lmax < 0:
            raise ValueError("lmax must be >=0.")
csongor's avatar
csongor committed
137
        return lmax
Martin Reinecke's avatar
Martin Reinecke committed
138
139
140
141
142
143
144
145
146

    def get_default_codomain(self):
        from .. import GLSpace
        return GLSpace(self.lmax+1, self.mmax*2+1)

    def check_codomain(self, codomain):
        from .. import GLSpace, HPSpace
        if not isinstance(codomain, (GLSpace, HPSpace)):
            raise TypeError("codomain must be a GLSpace.")