los_response.py 8.76 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
14
# Copyright(C) 2013-2019 Max-Planck-Society
15
#
16
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
Philipp Arras's avatar
Philipp Arras committed
17

Martin Reinecke's avatar
Martin Reinecke committed
18
19
20
import numpy as np
from scipy.sparse import coo_matrix
from scipy.sparse.linalg import aslinearoperator
Philipp Arras's avatar
Philipp Arras committed
21
22
23
from scipy.special import erfc

from .. import dobj
Martin Reinecke's avatar
Martin Reinecke committed
24
25
26
27
from ..domain_tuple import DomainTuple
from ..domains.rg_space import RGSpace
from ..domains.unstructured_domain import UnstructuredDomain
from ..field import Field
Philipp Arras's avatar
Philipp Arras committed
28
from ..operators.linear_operator import LinearOperator
Martin Reinecke's avatar
Martin Reinecke committed
29
30


31
def _gaussian_sf(x):
32
    return 0.5*erfc(x/np.sqrt(2.))
Martin Reinecke's avatar
Martin Reinecke committed
33
34
35
36
37


def _comp_traverse(start, end, shp, dist, lo, mid, hi, erf):
    ndim = start.shape[0]
    nlos = start.shape[1]
38
    inc = np.full(len(shp), 1, dtype=np.int64)
Martin Reinecke's avatar
Martin Reinecke committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
    for i in range(-2, -len(shp)-1, -1):
        inc[i] = inc[i+1]*shp[i+1]

    pmax = np.array(shp)

    out = [None]*nlos
    for i in range(nlos):
        dir = end[:, i]-start[:, i]
        dirx = np.where(dir == 0., 1e-12, dir)
        d0 = np.where(dir == 0., ((start[:, i] > 0)-0.5)*1e12,
                      -start[:, i]/dirx)
        d1 = np.where(dir == 0., ((start[:, i] < pmax)-0.5)*-1e12,
                      (pmax-start[:, i])/dirx)
        (dmin, dmax) = (np.minimum(d0, d1), np.maximum(d0, d1))
        dmin = dmin.max()
        dmax = dmax.min()
        dmin = np.maximum(0., dmin)
        dmax = np.minimum(1., dmax)
        dmax = np.maximum(dmin, dmax)
        # hack: move away from potential grid crossings
        dmin += 1e-7
        dmax -= 1e-7
Martin Reinecke's avatar
Martin Reinecke committed
61
        if dmin >= dmax:  # no intersection
62
            out[i] = (np.full(0, 0, dtype=np.int64), np.full(0, 0.))
Martin Reinecke's avatar
Martin Reinecke committed
63
64
65
66
67
68
69
70
71
72
73
74
75
            continue
        # determine coordinates of first cell crossing
        c_first = np.ceil(start[:, i]+dir*dmin)
        c_first = np.where(dir > 0., c_first, c_first-1.)
        c_first = (c_first-start[:, i])/dirx
        pos1 = np.asarray((start[:, i]+dmin*dir), dtype=np.int)
        pos1 = np.sum(pos1*inc)
        cdist = np.empty(0, dtype=np.float64)
        add = np.empty(0, dtype=np.int)
        for j in range(ndim):
            if dir[j] != 0:
                step = inc[j] if dir[j] > 0 else -inc[j]
                tmp = np.arange(start=c_first[j], stop=dmax,
Martin Reinecke's avatar
Martin Reinecke committed
76
                                step=abs(1./dir[j]))
Martin Reinecke's avatar
Martin Reinecke committed
77
                cdist = np.append(cdist, tmp)
78
                add = np.append(add, np.full(len(tmp), step, dtype=np.int64))
Martin Reinecke's avatar
Martin Reinecke committed
79
80
81
        idx = np.argsort(cdist)
        cdist = cdist[idx]
        add = add[idx]
82
83
        cdist = np.append(np.full(1, dmin), cdist)
        cdist = np.append(cdist, np.full(1, dmax))
Martin Reinecke's avatar
Martin Reinecke committed
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
        corfac = np.linalg.norm(dir*dist)
        cdist *= corfac
        wgt = np.diff(cdist)
        mdist = 0.5*(cdist[:-1]+cdist[1:])
        wgt = apply_erf(wgt, mdist, lo[i], mid[i], hi[i], erf)
        add = np.append(pos1, add)
        add = np.cumsum(add)
        out[i] = (add, wgt)
    return out


def apply_erf(wgt, dist, lo, mid, hi, erf):
    wgt = wgt.copy()
    mask = dist > hi
    wgt[mask] = 0.
99
100
    mask = (dist > lo) & (dist <= hi)
    sig = (1/lo - 1/mid)/3
101
    wgt[mask] *= erf((-1/dist[mask]+1/mid)/sig)
Martin Reinecke's avatar
Martin Reinecke committed
102
103
104
105
    return wgt


class LOSResponse(LinearOperator):
Martin Reinecke's avatar
Martin Reinecke committed
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
    """Line-of-sight response operator

    This operator transforms from a single RGSpace to an unstructured domain
    with as many entries as there were lines of sight passed to the
    constructor. Adjoint application is also provided.

    Parameters
    ----------
    domain : RGSpace or DomainTuple
        The operator's input domain. This must be a single RGSpace.
    starts, ends : numpy.ndarray(float) with two dimensions
        Arrays containing the start and end points of the individual lines
        of sight. The first dimension must have as many entries as `domain`
        has dimensions. The second dimensions must be identical for both arrays
        and indicated the total number of lines of sight.
    sigmas_low, sigmas_up : numpy.ndarray(float) (optional)
122
        sigmas_low is 1/parallax-1/(parallax+3*parallax_error), where the parallax
123
124
        error is assumed to be Gaussian distributed.
        sigmas_up is the distance at which the weight is truncated.
125
        Should be at least 1/(parallax-3*parallax_error)-1/parallax,
126
        but could be higher.
127
        If unsure, leave blank.
Martin Reinecke's avatar
Martin Reinecke committed
128
129
130
131
132
133

    Notes
    -----
    `starts, `ends`, `sigmas_low`, and `sigmas_up` have to be identical on
    every calling MPI task (i.e. the full LOS information has to be provided on
    every task).
Martin Reinecke's avatar
Martin Reinecke committed
134
    """
Philipp Arras's avatar
Philipp Arras committed
135

Martin Reinecke's avatar
Martin Reinecke committed
136
137
    def __init__(self, domain, starts, ends, sigmas_low=None, sigmas_up=None):
        self._domain = DomainTuple.make(domain)
Martin Reinecke's avatar
Martin Reinecke committed
138
        self._capability = self.TIMES | self.ADJOINT_TIMES
Martin Reinecke's avatar
Martin Reinecke committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

        if ((not isinstance(self.domain[0], RGSpace)) or
                (len(self._domain) != 1)):
            raise TypeError("The domain must be exactly one RGSpace instance.")

        ndim = len(self.domain[0].shape)
        starts = np.array(starts)
        nlos = starts.shape[1]
        ends = np.array(ends)
        if sigmas_low is None:
            sigmas_low = np.zeros(nlos, dtype=np.float32)
        if sigmas_up is None:
            sigmas_up = np.zeros(nlos, dtype=np.float32)
        sigmas_low = np.array(sigmas_low)
        sigmas_up = np.array(sigmas_up)
Martin Reinecke's avatar
Martin Reinecke committed
154
155
156
157
158
159
160
161
        if starts.shape[0] != ndim:
            raise TypeError("dimension mismatch")
        if nlos != sigmas_low.shape[0]:
            raise TypeError("dimension mismatch")
        if starts.shape != ends.shape:
            raise TypeError("dimension mismatch")
        if sigmas_low.shape != sigmas_up.shape:
            raise TypeError("dimension mismatch")
Martin Reinecke's avatar
Martin Reinecke committed
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182

        self._local_shape = dobj.local_shape(self.domain[0].shape)
        local_zero_point = (np.array(
            dobj.ibegin_from_shape(self.domain[0].shape)) *
            np.array(self.domain[0].distances))

        diffs = ends-starts
        difflen = np.linalg.norm(diffs, axis=0)
        diffs /= difflen
        real_ends = ends + sigmas_up*diffs
        lzp = local_zero_point.reshape((-1, 1))
        dist = np.array(self.domain[0].distances).reshape((-1, 1))
        localized_pixel_starts = (starts-lzp)/dist + 0.5
        localized_pixel_ends = (real_ends-lzp)/dist + 0.5

        # get the shape of the local data slice
        w_i = _comp_traverse(localized_pixel_starts,
                             localized_pixel_ends,
                             self._local_shape,
                             np.array(self.domain[0].distances),
                             difflen-sigmas_low, difflen, difflen+sigmas_up,
183
                             _gaussian_sf)
Martin Reinecke's avatar
Martin Reinecke committed
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

        boxsz = 16
        nlos = len(w_i)
        npix = np.prod(self._local_shape)
        ntot = 0
        for i in w_i:
            ntot += len(i[1])
        pri = np.empty(ntot, dtype=np.float64)
        ilos = np.empty(ntot, dtype=np.int32)
        iarr = np.empty(ntot, dtype=np.int32)
        xwgt = np.empty(ntot, dtype=np.float32)
        ofs = 0
        cnt = 0
        for i in w_i:
            nval = len(i[1])
            ilos[ofs:ofs+nval] = cnt
            iarr[ofs:ofs+nval] = i[0]
            xwgt[ofs:ofs+nval] = i[1]
            fullidx = np.unravel_index(i[0], self._local_shape)
            tmp = np.zeros(nval, dtype=np.float64)
            fct = 1.
            for j in range(ndim):
                tmp += (fullidx[j]//boxsz)*fct
                fct *= self._local_shape[j]
            tmp += cnt/float(nlos)
209
            tmp += iarr[ofs:ofs+nval]/(float(nlos)*float(npix))
Martin Reinecke's avatar
Martin Reinecke committed
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
            pri[ofs:ofs+nval] = tmp
            ofs += nval
            cnt += 1
        xtmp = np.argsort(pri)
        ilos = ilos[xtmp]
        iarr = iarr[xtmp]
        xwgt = xwgt[xtmp]
        self._smat = aslinearoperator(
            coo_matrix((xwgt, (ilos, iarr)),
                       shape=(nlos, np.prod(self._local_shape))))

        self._target = DomainTuple.make(UnstructuredDomain(nlos))

    def apply(self, x, mode):
        self._check_input(x, mode)
        if mode == self.TIMES:
            result_arr = self._smat.matvec(x.local_data.reshape(-1))
            return Field.from_global_data(self._target, result_arr,
                                          sum_up=True)
        local_input_data = x.to_global_data().reshape(-1)
        res = self._smat.rmatvec(local_input_data).reshape(self._local_shape)
        return Field.from_local_data(self._domain, res)