bernoulli_energy.py 1.42 KB
Newer Older
Jakob Knollmueller's avatar
Jakob Knollmueller committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2018 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.

19
from __future__ import absolute_import, division, print_function
Philipp Arras's avatar
Philipp Arras committed
20
21

from ..compat import *
Martin Reinecke's avatar
Martin Reinecke committed
22
from ..operators.operator import Operator
Jakob Knollmueller's avatar
Jakob Knollmueller committed
23
from ..operators.sandwich_operator import SandwichOperator
Martin Reinecke's avatar
Martin Reinecke committed
24
from ..sugar import makeOp
Jakob Knollmueller's avatar
Jakob Knollmueller committed
25
26


Martin Reinecke's avatar
Martin Reinecke committed
27
class BernoulliEnergy(Operator):
Jakob Knollmueller's avatar
Jakob Knollmueller committed
28
    def __init__(self, p, d):
Martin Reinecke's avatar
Martin Reinecke committed
29
        super(BernoulliEnergy, self).__init__()
Jakob Knollmueller's avatar
Jakob Knollmueller committed
30
31
32
        self._p = p
        self._d = d

Martin Reinecke's avatar
Martin Reinecke committed
33
34
35
36
37
38
    def __call__(self, x):
        x = self._p(x)
        v = ((-self._d)*x.log()).sum() - ((1.-self._d)*((1.-x).log())).sum()
        met = makeOp(1./(x.val*(1.-x.val)))
        met = SandwichOperator.make(x.jac, met)
        return v.add_metric(met)