test_jacobian.py 5.97 KB
Newer Older
Philipp Arras's avatar
Philipp Arras committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2019 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.

import numpy as np
import pytest
20
from numpy.testing import assert_
Philipp Arras's avatar
Philipp Arras committed
21 22 23

import nifty5 as ift

24
from ..common import list2fixture
Philipp Arras's avatar
Philipp Arras committed
25 26 27 28 29 30 31 32 33 34 35

pmp = pytest.mark.parametrize
space = list2fixture([
    ift.GLSpace(15),
    ift.RGSpace(64, distances=.789),
    ift.RGSpace([32, 32], distances=.789)
])
space1 = space
seed = list2fixture([4, 78, 23])


Philipp Arras's avatar
Philipp Arras committed
36
def testBasics(space, seed):
Philipp Arras's avatar
Philipp Arras committed
37 38 39
    np.random.seed(seed)
    S = ift.ScalingOperator(1., space)
    s = S.draw_sample()
Philipp Arras's avatar
Philipp Arras committed
40
    var = ift.Linearization.make_var(s)
Philipp Arras's avatar
Philipp Arras committed
41
    model = ift.ScalingOperator(6., var.target)
Martin Reinecke's avatar
Martin Reinecke committed
42
    ift.extra.check_jacobian_consistency(model, var.val)
Philipp Arras's avatar
Philipp Arras committed
43 44 45 46 47 48 49


@pmp('type1', ['Variable', 'Constant'])
@pmp('type2', ['Variable'])
def testBinary(type1, type2, space, seed):
    dom1 = ift.MultiDomain.make({'s1': space})
    dom2 = ift.MultiDomain.make({'s2': space})
Philipp Arras's avatar
Philipp Arras committed
50
    np.random.seed(seed)
Philipp Arras's avatar
Philipp Arras committed
51
    dom = ift.MultiDomain.union((dom1, dom2))
52 53
    select_s1 = ift.ducktape(None, dom1, "s1")
    select_s2 = ift.ducktape(None, dom2, "s2")
Philipp Arras's avatar
Philipp Arras committed
54 55
    model = select_s1*select_s2
    pos = ift.from_random("normal", dom)
Martin Reinecke's avatar
Martin Reinecke committed
56
    ift.extra.check_jacobian_consistency(model, pos, ntries=20)
Philipp Arras's avatar
Philipp Arras committed
57 58
    model = select_s1 + select_s2
    pos = ift.from_random("normal", dom)
Martin Reinecke's avatar
Martin Reinecke committed
59
    ift.extra.check_jacobian_consistency(model, pos, ntries=20)
Philipp Arras's avatar
Philipp Arras committed
60 61
    model = select_s1.scale(3.)
    pos = ift.from_random("normal", dom1)
Martin Reinecke's avatar
Martin Reinecke committed
62
    ift.extra.check_jacobian_consistency(model, pos, ntries=20)
Philipp Arras's avatar
Philipp Arras committed
63 64
    model = ift.ScalingOperator(2.456, space)(select_s1*select_s2)
    pos = ift.from_random("normal", dom)
Martin Reinecke's avatar
Martin Reinecke committed
65
    ift.extra.check_jacobian_consistency(model, pos, ntries=20)
66
    model = ift.sigmoid(2.456*(select_s1*select_s2))
Philipp Arras's avatar
Philipp Arras committed
67
    pos = ift.from_random("normal", dom)
Martin Reinecke's avatar
Martin Reinecke committed
68
    ift.extra.check_jacobian_consistency(model, pos, ntries=20)
Philipp Arras's avatar
Philipp Arras committed
69 70
    pos = ift.from_random("normal", dom)
    model = ift.OuterProduct(pos['s1'], ift.makeDomain(space))
Martin Reinecke's avatar
Martin Reinecke committed
71
    ift.extra.check_jacobian_consistency(model, pos['s2'], ntries=20)
Martin Reinecke's avatar
Martin Reinecke committed
72
    model = select_s1**2
73
    pos = ift.from_random("normal", dom1)
Martin Reinecke's avatar
Martin Reinecke committed
74
    ift.extra.check_jacobian_consistency(model, pos, ntries=20)
Martin Reinecke's avatar
Martin Reinecke committed
75
    model = select_s1.clip(-1, 1)
76
    pos = ift.from_random("normal", dom1)
77 78 79 80
    ift.extra.check_jacobian_consistency(model, pos, ntries=20)
    f = ift.from_random("normal", space)
    model = select_s1.clip(f-0.1, f+1.)
    pos = ift.from_random("normal", dom1)
Martin Reinecke's avatar
Martin Reinecke committed
81
    ift.extra.check_jacobian_consistency(model, pos, ntries=20)
Philipp Arras's avatar
Philipp Arras committed
82 83 84
    if isinstance(space, ift.RGSpace):
        model = ift.FFTOperator(space)(select_s1*select_s2)
        pos = ift.from_random("normal", dom)
Martin Reinecke's avatar
Martin Reinecke committed
85
        ift.extra.check_jacobian_consistency(model, pos, ntries=20)
Philipp Arras's avatar
Philipp Arras committed
86 87 88 89 90


def testModelLibrary(space, seed):
    # Tests amplitude model and coorelated field model
    np.random.seed(seed)
91
    domain = ift.PowerSpace(space.get_default_codomain())
92
    model = ift.SLAmplitude(target=domain, n_pix=4, a=.5, k0=2, sm=3, sv=1.5,
Lukas Platz's avatar
Lukas Platz committed
93
                            im=1.75, iv=1.3, za=5, zq=4)
94
    assert_(isinstance(model, ift.Operator))
Philipp Arras's avatar
Philipp Arras committed
95 96
    S = ift.ScalingOperator(1., model.domain)
    pos = S.draw_sample()
Martin Reinecke's avatar
Martin Reinecke committed
97
    ift.extra.check_jacobian_consistency(model, pos, ntries=20)
Philipp Arras's avatar
Philipp Arras committed
98 99 100 101

    model2 = ift.CorrelatedField(space, model)
    S = ift.ScalingOperator(1., model2.domain)
    pos = S.draw_sample()
Martin Reinecke's avatar
Martin Reinecke committed
102
    ift.extra.check_jacobian_consistency(model2, pos, ntries=20)
Philipp Arras's avatar
Philipp Arras committed
103

Lukas Platz's avatar
Lukas Platz committed
104 105 106 107 108
    domtup = ift.DomainTuple.make((space, space))
    model3 = ift.MultiCorrelatedField(domtup, [model, model])
    S = ift.ScalingOperator(1., model3.domain)
    pos = S.draw_sample()
    ift.extra.check_jacobian_consistency(model3, pos, ntries=20)
109

Philipp Arras's avatar
Philipp Arras committed
110 111 112 113 114 115

def testPointModel(space, seed):
    S = ift.ScalingOperator(1., space)
    pos = S.draw_sample()
    alpha = 1.5
    q = 0.73
Philipp Arras's avatar
Fixups  
Philipp Arras committed
116
    model = ift.InverseGammaOperator(space, alpha, q)
Philipp Arras's avatar
Philipp Arras committed
117
    # FIXME All those cdfs and ppfs are not very accurate
Martin Reinecke's avatar
Martin Reinecke committed
118
    ift.extra.check_jacobian_consistency(model, pos, tol=1e-2, ntries=20)
Martin Reinecke's avatar
Martin Reinecke committed
119

120

Philipp Frank's avatar
Philipp Frank committed
121
@pmp('target', [
Martin Reinecke's avatar
Martin Reinecke committed
122 123 124
    ift.RGSpace(64, distances=.789, harmonic=True),
    ift.RGSpace([32, 32], distances=.789, harmonic=True),
    ift.RGSpace([32, 32, 8], distances=.789, harmonic=True)
125
])
Martin Reinecke's avatar
Martin Reinecke committed
126 127 128
@pmp('causal', [True, False])
@pmp('minimum_phase', [True, False])
@pmp('seed', [4, 78, 23])
Philipp Frank's avatar
Philipp Frank committed
129 130 131 132 133 134 135 136 137 138 139
def testDynamicModel(target, causal, minimum_phase, seed):
    dct = {
            'target': target,
            'harmonic_padding': None,
            'sm_s0': 3.,
            'sm_x0': 1.,
            'key': 'f',
            'causal': causal,
            'minimum_phase': minimum_phase
            }
    model, _ = ift.dynamic_operator(**dct)
Martin Reinecke's avatar
Martin Reinecke committed
140 141 142
    S = ift.ScalingOperator(1., model.domain)
    pos = S.draw_sample()
    # FIXME I dont know why smaller tol fails for 3D example
Martin Reinecke's avatar
Martin Reinecke committed
143
    ift.extra.check_jacobian_consistency(model, pos, tol=1e-5, ntries=20)
Philipp Frank's avatar
Philipp Frank committed
144
    if len(target.shape) > 1:
145
        dct = {
Philipp Frank's avatar
Philipp Frank committed
146
            'target': target,
147 148 149 150 151 152 153 154 155 156
            'harmonic_padding': None,
            'sm_s0': 3.,
            'sm_x0': 1.,
            'key': 'f',
            'lightcone_key': 'c',
            'sigc': 1.,
            'quant': 5,
            'causal': causal,
            'minimum_phase': minimum_phase
        }
Philipp Frank's avatar
Philipp Frank committed
157 158 159
        dct['lightcone_key'] = 'c'
        dct['sigc'] = 1.
        dct['quant'] = 5
160
        model, _ = ift.dynamic_lightcone_operator(**dct)
Martin Reinecke's avatar
Martin Reinecke committed
161 162 163
        S = ift.ScalingOperator(1., model.domain)
        pos = S.draw_sample()
        # FIXME I dont know why smaller tol fails for 3D example
Martin Reinecke's avatar
Martin Reinecke committed
164
        ift.extra.check_jacobian_consistency(
165
            model, pos, tol=1e-5, ntries=20)