plot.py 12.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
14
# Copyright(C) 2013-2019 Max-Planck-Society
15
#
16
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
17

Martin Reinecke's avatar
Martin Reinecke committed
18
19
import os

20
21
import numpy as np

Martin Reinecke's avatar
fix    
Martin Reinecke committed
22
23
24
25
26
27
from . import dobj
from .domains.gl_space import GLSpace
from .domains.hp_space import HPSpace
from .domains.power_space import PowerSpace
from .domains.rg_space import RGSpace
from .field import Field
28

Martin Reinecke's avatar
Martin Reinecke committed
29
30
31
32
33
34
35
36
# relevant properties:
# - x/y size
# - x/y/z log
# - x/y/z min/max
# - colorbar/colormap
# - axis on/off
# - title
# - axis labels
Martin Reinecke's avatar
Martin Reinecke committed
37
# - labels
Martin Reinecke's avatar
Martin Reinecke committed
38

Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
39

Martin Reinecke's avatar
Martin Reinecke committed
40
41
42
def _mollweide_helper(xsize):
    xsize = int(xsize)
    ysize = xsize//2
Martin Reinecke's avatar
Martin Reinecke committed
43
    res = np.full(shape=(ysize, xsize), fill_value=np.nan, dtype=np.float64)
Martin Reinecke's avatar
Martin Reinecke committed
44
    xc, yc = (xsize-1)*0.5, (ysize-1)*0.5
Martin Reinecke's avatar
Martin Reinecke committed
45
    u, v = np.meshgrid(np.arange(xsize), np.arange(ysize))
Martin Reinecke's avatar
Martin Reinecke committed
46
    u, v = 2*(u-xc)/(xc/1.02), (v-yc)/(yc/1.02)
Martin Reinecke's avatar
Martin Reinecke committed
47
48
49
50
51
52
53
54
55

    mask = np.where((u*u*0.25 + v*v) <= 1.)
    t1 = v[mask]
    theta = 0.5*np.pi-(
        np.arcsin(2/np.pi*(np.arcsin(t1) + t1*np.sqrt((1.-t1)*(1+t1)))))
    phi = -0.5*np.pi*u[mask]/np.maximum(np.sqrt((1-t1)*(1+t1)), 1e-6)
    phi = np.where(phi < 0, phi+2*np.pi, phi)
    return res, mask, theta, phi

Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
56

Martin Reinecke's avatar
Martin Reinecke committed
57
58
def _find_closest(A, target):
    # A must be sorted
Martin Reinecke's avatar
Martin Reinecke committed
59
60
    idx = np.clip(A.searchsorted(target), 1, len(A)-1)
    idx -= target - A[idx-1] < A[idx] - target
Martin Reinecke's avatar
Martin Reinecke committed
61
62
    return idx

Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
63

Martin Reinecke's avatar
Martin Reinecke committed
64
def _makeplot(name):
65
    import matplotlib.pyplot as plt
Martin Reinecke's avatar
Martin Reinecke committed
66
    if dobj.rank != 0:
67
        plt.close()
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
68
        return
Martin Reinecke's avatar
Martin Reinecke committed
69
70
    if name is None:
        plt.show()
71
        plt.close()
Martin Reinecke's avatar
Martin Reinecke committed
72
73
        return
    extension = os.path.splitext(name)[1]
74
    if extension in (".pdf", ".png", ".svg"):
Martin Reinecke's avatar
Martin Reinecke committed
75
76
77
78
79
        plt.savefig(name)
        plt.close()
    else:
        raise ValueError("file format not understood")

Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
80

Martin Reinecke's avatar
Martin Reinecke committed
81
def _limit_xy(**kwargs):
Martin Reinecke's avatar
Martin Reinecke committed
82
    import matplotlib.pyplot as plt
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
83
    x1, x2, y1, y2 = plt.axis()
clienhar's avatar
clienhar committed
84
85
86
87
    x1 = kwargs.pop("xmin", x1)
    x2 = kwargs.pop("xmax", x2)
    y1 = kwargs.pop("ymin", y1)
    y2 = kwargs.pop("ymax", y2)
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
88
89
    plt.axis((x1, x2, y1, y2))

Martin Reinecke's avatar
Martin Reinecke committed
90

Martin Reinecke's avatar
Martin Reinecke committed
91
92
93
94
95
96
97
98
99
def _register_cmaps():
    try:
        if _register_cmaps._cmaps_registered:
            return
    except AttributeError:
        _register_cmaps._cmaps_registered = True

    from matplotlib.colors import LinearSegmentedColormap
    import matplotlib.pyplot as plt
Martin Reinecke's avatar
Martin Reinecke committed
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
    planckcmap = {'red':   ((0., 0., 0.), (.4, 0., 0.), (.5, 1., 1.),
                            (.7, 1., 1.), (.8, .83, .83), (.9, .67, .67),
                            (1., .5, .5)),
                  'green': ((0., 0., 0.), (.2, 0., 0.), (.3, .3, .3),
                            (.4, .7, .7), (.5, 1., 1.), (.6, .7, .7),
                            (.7, .3, .3), (.8, 0., 0.), (1., 0., 0.)),
                  'blue':  ((0., .5, .5), (.1, .67, .67), (.2, .83, .83),
                            (.3, 1., 1.), (.5, 1., 1.), (.6, 0., 0.),
                            (1., 0., 0.))}
    he_cmap = {'red':   ((0., 0., 0.), (.167, 0., 0.), (.333, .5, .5),
                         (.5, 1., 1.), (1., 1., 1.)),
               'green': ((0., 0., 0.), (.5, 0., 0.), (.667, .5, .5),
                         (.833, 1., 1.), (1., 1., 1.)),
               'blue':  ((0., 0., 0.), (.167, 1., 1.), (.333, .5, .5),
                         (.5, 0., 0.), (1., 1., 1.))}
    fd_cmap = {'red':   ((0., .35, .35), (.1, .4, .4), (.2, .25, .25),
                         (.41, .47, .47), (.5, .8, .8), (.56, .96, .96),
                         (.59, 1., 1.), (.74, .8, .8), (.8, .8, .8),
                         (.9, .5, .5), (1., .4, .4)),
               'green': ((0., 0., 0.), (.2, 0., 0.), (.362, .88, .88),
                         (.5, 1., 1.), (.638, .88, .88), (.8, .25, .25),
                         (.9, .3, .3), (1., .2, .2)),
               'blue':  ((0., .35, .35), (.1, .4, .4), (.2, .8, .8),
                         (.26, .8, .8), (.41, 1., 1.), (.44, .96, .96),
                         (.5, .8, .8), (.59, .47, .47), (.8, 0., 0.),
                         (1., 0., 0.))}
    fdu_cmap = {'red':   ((0., 1., 1.), (0.1, .8, .8), (.2, .65, .65),
                          (.41, .6, .6), (.5, .7, .7), (.56, .96, .96),
                          (.59, 1., 1.), (.74, .8, .8), (.8, .8, .8),
                          (.9, .5, .5), (1., .4, .4)),
                'green': ((0., .9, .9), (.362, .95, .95), (.5, 1., 1.),
                          (.638, .88, .88), (.8, .25, .25), (.9, .3, .3),
                          (1., .2, .2)),
                'blue':  ((0., 1., 1.), (.1, .8, .8), (.2, 1., 1.),
                          (.41, 1., 1.), (.44, .96, .96), (.5, .7, .7),
                          (.59, .42, .42), (.8, 0., 0.), (1., 0., 0.))}
    pm_cmap = {'red':   ((0., 1., 1.), (.1, .96, .96), (.2, .84, .84),
                         (.3, .64, .64), (.4, .36, .36), (.5, 0., 0.),
                         (1., 0., 0.)),
               'green': ((0., .5, .5), (.1, .32, .32), (.2, .18, .18),
                         (.3, .8, .8),  (.4, .2, .2), (.5, 0., 0.),
                         (.6, .2, .2), (.7, .8, .8), (.8, .18, .18),
                         (.9, .32, .32), (1., .5, .5)),
               'blue':  ((0., 0., 0.), (.5, 0., 0.), (.6, .36, .36),
                         (.7, .64, .64), (.8, .84, .84), (.9, .96, .96),
                         (1., 1., 1.))}
Martin Reinecke's avatar
Martin Reinecke committed
146
147
148

    plt.register_cmap(cmap=LinearSegmentedColormap("Planck-like", planckcmap))
    plt.register_cmap(cmap=LinearSegmentedColormap("High Energy", he_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
149
    plt.register_cmap(cmap=LinearSegmentedColormap("Faraday Map", fd_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
150
151
    plt.register_cmap(cmap=LinearSegmentedColormap("Faraday Uncertainty",
                                                   fdu_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
152
    plt.register_cmap(cmap=LinearSegmentedColormap("Plus Minus", pm_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
153

Martin Reinecke's avatar
Martin Reinecke committed
154

Martin Reinecke's avatar
Martin Reinecke committed
155
def _plot(f, ax, **kwargs):
156
    import matplotlib.pyplot as plt
Martin Reinecke's avatar
Martin Reinecke committed
157
    _register_cmaps()
158
159
160
    if isinstance(f, Field):
        f = [f]
    if not isinstance(f, list):
Martin Reinecke's avatar
Martin Reinecke committed
161
        raise TypeError("incorrect data type")
162
163
164
165
166
167
168
169
170
171
172
    for i, fld in enumerate(f):
        if not isinstance(fld, Field):
            raise TypeError("incorrect data type")
        if i == 0:
            dom = fld.domain
            if len(dom) != 1:
                raise ValueError("input field must have exactly one domain")
        else:
            if fld.domain != dom:
                raise ValueError("domain mismatch")
            if not (isinstance(dom[0], PowerSpace) or
173
                    (isinstance(dom[0], RGSpace) and len(dom[0].shape) == 1)):
174
                raise ValueError("PowerSpace or 1D RGSpace required")
Martin Reinecke's avatar
Martin Reinecke committed
175

clienhar's avatar
clienhar committed
176
    label = kwargs.pop("label", None)
177
    if not isinstance(label, list):
Martin Reinecke's avatar
Martin Reinecke committed
178
        label = [label] * len(f)
Martin Reinecke's avatar
Martin Reinecke committed
179

Martin Reinecke's avatar
Martin Reinecke committed
180
    linewidth = kwargs.pop("linewidth", 1.)
Philipp Arras's avatar
Philipp Arras committed
181
    if not isinstance(linewidth, list):
Martin Reinecke's avatar
Martin Reinecke committed
182
        linewidth = [linewidth] * len(f)
Philipp Arras's avatar
Philipp Arras committed
183

clienhar's avatar
clienhar committed
184
    alpha = kwargs.pop("alpha", None)
Philipp Arras's avatar
Philipp Arras committed
185
    if not isinstance(alpha, list):
Martin Reinecke's avatar
Martin Reinecke committed
186
        alpha = [alpha] * len(f)
Philipp Arras's avatar
Philipp Arras committed
187

Philipp Arras's avatar
Philipp Arras committed
188
189
    foo = kwargs.pop("norm", None)
    norm = {} if foo is None else {'norm': foo}
190

191
    dom = dom[0]
clienhar's avatar
clienhar committed
192
193
194
195
    ax.set_title(kwargs.pop("title", ""))
    ax.set_xlabel(kwargs.pop("xlabel", ""))
    ax.set_ylabel(kwargs.pop("ylabel", ""))
    cmap = kwargs.pop("colormap", plt.rcParams['image.cmap'])
Martin Reinecke's avatar
Martin Reinecke committed
196
    if isinstance(dom, RGSpace):
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
197
        if len(dom.shape) == 1:
Martin Reinecke's avatar
Martin Reinecke committed
198
199
            npoints = dom.shape[0]
            dist = dom.distances[0]
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
200
            xcoord = np.arange(npoints, dtype=np.float64)*dist
Martin Reinecke's avatar
Martin Reinecke committed
201
            for i, fld in enumerate(f):
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
202
                ycoord = fld.to_global_data()
Martin Reinecke's avatar
Martin Reinecke committed
203
204
                plt.plot(xcoord, ycoord, label=label[i],
                         linewidth=linewidth[i], alpha=alpha[i])
Martin Reinecke's avatar
Martin Reinecke committed
205
            _limit_xy(**kwargs)
206
207
            if label != ([None]*len(f)):
                plt.legend()
Martin Reinecke's avatar
Martin Reinecke committed
208
            return
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
209
        elif len(dom.shape) == 2:
Martin Reinecke's avatar
Martin Reinecke committed
210
211
            nx, ny = dom.shape
            dx, dy = dom.distances
Martin Reinecke's avatar
Martin Reinecke committed
212
213
214
215
            im = ax.imshow(
                f[0].to_global_data().T, extent=[0, nx*dx, 0, ny*dy],
                vmin=kwargs.get("zmin"), vmax=kwargs.get("zmax"),
                cmap=cmap, origin="lower", **norm)
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
216
217
218
219
            # from mpl_toolkits.axes_grid1 import make_axes_locatable
            # divider = make_axes_locatable(ax)
            # cax = divider.append_axes("right", size="5%", pad=0.05)
            # plt.colorbar(im,cax=cax)
Martin Reinecke's avatar
Martin Reinecke committed
220
            plt.colorbar(im)
Martin Reinecke's avatar
Martin Reinecke committed
221
            _limit_xy(**kwargs)
Martin Reinecke's avatar
Martin Reinecke committed
222
223
224
225
            return
    elif isinstance(dom, PowerSpace):
        plt.xscale('log')
        plt.yscale('log')
Philipp Arras's avatar
Philipp Arras committed
226
        xcoord = dom.k_lengths
Martin Reinecke's avatar
Martin Reinecke committed
227
        for i, fld in enumerate(f):
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
228
            ycoord = fld.to_global_data()
Martin Reinecke's avatar
Martin Reinecke committed
229
230
            plt.plot(xcoord, ycoord, label=label[i],
                     linewidth=linewidth[i], alpha=alpha[i])
Martin Reinecke's avatar
Martin Reinecke committed
231
        _limit_xy(**kwargs)
232
233
        if label != ([None]*len(f)):
            plt.legend()
Martin Reinecke's avatar
Martin Reinecke committed
234
        return
Martin Reinecke's avatar
Martin Reinecke committed
235
    elif isinstance(dom, (HPSpace, GLSpace)):
Martin Reinecke's avatar
Martin Reinecke committed
236
237
238
        import pyHealpix
        xsize = 800
        res, mask, theta, phi = _mollweide_helper(xsize)
Martin Reinecke's avatar
Martin Reinecke committed
239
240
241
242
243
244
245
246
247
248
249
250
251
        if isinstance(dom, HPSpace):
            ptg = np.empty((phi.size, 2), dtype=np.float64)
            ptg[:, 0] = theta
            ptg[:, 1] = phi
            base = pyHealpix.Healpix_Base(int(np.sqrt(f[0].size//12)), "RING")
            res[mask] = f[0].to_global_data()[base.ang2pix(ptg)]
        else:
            ra = np.linspace(0, 2*np.pi, dom.nlon+1)
            dec = pyHealpix.GL_thetas(dom.nlat)
            ilat = _find_closest(dec, theta)
            ilon = _find_closest(ra, phi)
            ilon = np.where(ilon == dom.nlon, 0, ilon)
            res[mask] = f[0].to_global_data()[ilat*dom.nlon + ilon]
Martin Reinecke's avatar
Martin Reinecke committed
252
        plt.axis('off')
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
253
        plt.imshow(res, vmin=kwargs.get("zmin"), vmax=kwargs.get("zmax"),
Martin Reinecke's avatar
Martin Reinecke committed
254
                   cmap=cmap, origin="lower")
Martin Reinecke's avatar
Martin Reinecke committed
255
        plt.colorbar(orientation="horizontal")
Martin Reinecke's avatar
Martin Reinecke committed
256
257
258
        return

    raise ValueError("Field type not(yet) supported")
Martin Reinecke's avatar
Martin Reinecke committed
259

Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
260

261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
class Plot(object):
    def __init__(self):
        self._plots = []
        self._kwargs = []

    def add(self, f, **kwargs):
        """Add a figure to the current list of plots.

        Notes
        -----
        After doing one or more calls `plot()`, one also needs to call
        `plot_finish()` to output the result.

        Parameters
        ----------
        f: Field, or list of Field objects
Philipp Arras's avatar
Philipp Arras committed
277
            If `f` is a single Field, it must be defined on a single `RGSpace`,
Martin Reinecke's avatar
typo    
Martin Reinecke committed
278
            `PowerSpace`, `HPSpace`, `GLSpace`.
Philipp Arras's avatar
Philipp Arras committed
279
            If it is a list, all list members must be Fields defined over the
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
            same one-dimensional `RGSpace` or `PowerSpace`.
        title: string
            title of the plot
        xlabel: string
            label for the x axis
        ylabel: string
            label for the y axis
        [xyz]min, [xyz]max: float
            limits for the values to plot
        colormap: string
            color map to use for the plot (if it is a 2D plot)
        linewidth: float or list of floats
            line width
        label: string of list of strings
            annotation string
        alpha: float or list of floats
            transparency value
        """
        self._plots.append(f)
        self._kwargs.append(kwargs)

    def output(self, **kwargs):
        """Plot the accumulated list of figures.

        Parameters
        ----------
        title: string
            title of the full plot
        nx, ny: integer (default: square root of the numer of plots, rounded up)
            number of subplots to use in x- and y-direction
        xsize, ysize: float (default: 6)
            dimensions of the full plot in inches
        name: string (default: "")
            if left empty, the plot will be shown on the screen,
            otherwise it will be written to a file with the given name.
            Supported extensions: .png and .pdf
        """
        import matplotlib.pyplot as plt
        nplot = len(self._plots)
        fig = plt.figure()
        if "title" in kwargs:
            plt.suptitle(kwargs.pop("title"))
        nx = kwargs.pop("nx", int(np.ceil(np.sqrt(nplot))))
        ny = kwargs.pop("ny", int(np.ceil(np.sqrt(nplot))))
        if nx*ny < nplot:
            raise ValueError(
                'Figure dimensions not sufficient for number of plots. '
                'Available plot slots: {}, number of plots: {}'
                .format(nx*ny, nplot))
        xsize = kwargs.pop("xsize", 6)
        ysize = kwargs.pop("ysize", 6)
        fig.set_size_inches(xsize, ysize)
        for i in range(nplot):
            ax = fig.add_subplot(ny, nx, i+1)
            _plot(self._plots[i], ax, **self._kwargs[i])
        fig.tight_layout()
        _makeplot(kwargs.pop("name", None))