nifty_core.py 149 KB
Newer Older
Marco Selig's avatar
Marco Selig committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
## NIFTY (Numerical Information Field Theory) has been developed at the
## Max-Planck-Institute for Astrophysics.
##
## Copyright (C) 2013 Max-Planck-Society
##
## Author: Marco Selig
## Project homepage: <http://www.mpa-garching.mpg.de/ift/nifty/>
##
## This program is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
## See the GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program. If not, see <http://www.gnu.org/licenses/>.

"""
    ..                  __   ____   __
    ..                /__/ /   _/ /  /_
    ..      __ ___    __  /  /_  /   _/  __   __
    ..    /   _   | /  / /   _/ /  /   /  / /  /
    ..   /  / /  / /  / /  /   /  /_  /  /_/  /
    ..  /__/ /__/ /__/ /__/    \___/  \___   /  core
    ..                               /______/

    .. The NIFTY project homepage is http://www.mpa-garching.mpg.de/ift/nifty/

    NIFTY [#]_, "Numerical Information Field Theory", is a versatile
    library designed to enable the development of signal inference algorithms
    that operate regardless of the underlying spatial grid and its resolution.
    Its object-oriented framework is written in Python, although it accesses
    libraries written in Cython, C++, and C for efficiency.

    NIFTY offers a toolkit that abstracts discretized representations of
    continuous spaces, fields in these spaces, and operators acting on fields
    into classes. Thereby, the correct normalization of operations on fields is
    taken care of automatically without concerning the user. This allows for an
    abstract formulation and programming of inference algorithms, including
    those derived within information field theory. Thus, NIFTY permits its user
Marco Selig's avatar
Marco Selig committed
45
    to rapidly prototype algorithms in 1D and then apply the developed code in
Marco Selig's avatar
Marco Selig committed
46
47
48
49
50
    higher-dimensional settings of real world problems. The set of spaces on
    which NIFTY operates comprises point sets, n-dimensional regular grids,
    spherical spaces, their harmonic counterparts, and product spaces
    constructed as combinations of those.

51
52
53
54
55
56
57
    References
    ----------
    .. [#] Selig et al., "NIFTY -- Numerical Information Field Theory --
        a versatile Python library for signal inference",
        `A&A, vol. 554, id. A26 <http://dx.doi.org/10.1051/0004-6361/201321236>`_,
        2013; `arXiv:1301.4499 <http://www.arxiv.org/abs/1301.4499>`_

Marco Selig's avatar
Marco Selig committed
58
59
60
61
62
63
    Class & Feature Overview
    ------------------------
    The NIFTY library features three main classes: **spaces** that represent
    certain grids, **fields** that are defined on spaces, and **operators**
    that apply to fields.

64
65
    .. Overview of all (core) classes:
    ..
Marco Selig's avatar
Marco Selig committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
    .. - switch
    .. - notification
    .. - _about
    .. - random
    .. - space
    ..     - point_space
    ..     - rg_space
    ..     - lm_space
    ..     - gl_space
    ..     - hp_space
    ..     - nested_space
    .. - field
    .. - operator
    ..     - diagonal_operator
    ..         - power_operator
    ..     - projection_operator
    ..     - vecvec_operator
    ..     - response_operator
    .. - probing
    ..     - trace_probing
    ..     - diagonal_probing

88
89
    Overview of the main classes and functions:

Marco Selig's avatar
Marco Selig committed
90
91
    .. automodule:: nifty

92
93
94
95
96
97
98
99
100
101
102
103
104
105
    - :py:class:`space`
        - :py:class:`point_space`
        - :py:class:`rg_space`
        - :py:class:`lm_space`
        - :py:class:`gl_space`
        - :py:class:`hp_space`
        - :py:class:`nested_space`
    - :py:class:`field`
    - :py:class:`operator`
        - :py:class:`diagonal_operator`
            - :py:class:`power_operator`
        - :py:class:`projection_operator`
        - :py:class:`vecvec_operator`
        - :py:class:`response_operator`
Marco Selig's avatar
Marco Selig committed
106

107
        .. currentmodule:: nifty.nifty_tools
Marco Selig's avatar
Marco Selig committed
108

109
110
        - :py:class:`invertible_operator`
        - :py:class:`propagator_operator`
Marco Selig's avatar
Marco Selig committed
111

112
        .. currentmodule:: nifty.nifty_explicit
Marco Selig's avatar
Marco Selig committed
113

114
        - :py:class:`explicit_operator`
Marco Selig's avatar
Marco Selig committed
115

116
    .. automodule:: nifty
Marco Selig's avatar
Marco Selig committed
117

118
119
120
    - :py:class:`probing`
        - :py:class:`trace_probing`
        - :py:class:`diagonal_probing`
Marco Selig's avatar
Marco Selig committed
121

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
        .. currentmodule:: nifty.nifty_explicit

        - :py:class:`explicit_probing`

    .. currentmodule:: nifty.nifty_tools

    - :py:class:`conjugate_gradient`
    - :py:class:`steepest_descent`

    .. currentmodule:: nifty.nifty_explicit

    - :py:func:`explicify`

    .. currentmodule:: nifty.nifty_power

    - :py:func:`weight_power`,
      :py:func:`smooth_power`,
      :py:func:`infer_power`,
      :py:func:`interpolate_power`
Marco Selig's avatar
Marco Selig committed
141
142
143
144

"""
from __future__ import division
import numpy as np
Marco Selig's avatar
Marco Selig committed
145
import pylab as pl
146
147
148
from nifty_paradict import space_paradict,\
                            point_space_paradict,\
                            nested_space_paradict
Ultimanet's avatar
Ultimanet committed
149
150
151

from nifty_about import about
from nifty_random import random
152
153
from nifty.nifty_mpi_data import distributed_data_object

Marco Selig's avatar
Marco Selig committed
154

Marco Selig's avatar
Marco Selig committed
155

Marco Selig's avatar
Marco Selig committed
156
pi = 3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679
157

Marco Selig's avatar
Marco Selig committed
158
159


Ultimanet's avatar
Ultimanet committed
160
161
162
163

##=============================================================================

class space(object):
Marco Selig's avatar
Marco Selig committed
164
    """
Ultimanet's avatar
Ultimanet committed
165
166
167
168
169
170
171
        ..     _______   ______    ____ __   _______   _______
        ..   /  _____/ /   _   | /   _   / /   ____/ /   __  /
        ..  /_____  / /  /_/  / /  /_/  / /  /____  /  /____/
        .. /_______/ /   ____/  \______|  \______/  \______/  class
        ..          /__/

        NIFTY base class for spaces and their discretizations.
Marco Selig's avatar
Marco Selig committed
172

Ultimanet's avatar
Ultimanet committed
173
174
175
        The base NIFTY space class is an abstract class from which other
        specific space subclasses, including those preimplemented in NIFTY
        (e.g. the regular grid class) must be derived.
Marco Selig's avatar
Marco Selig committed
176
177
178

        Parameters
        ----------
Ultimanet's avatar
Ultimanet committed
179
180
181
182
183
184
        para : {single object, list of objects}, *optional*
            This is a freeform list of parameters that derivatives of the space
            class can use (default: 0).
        datatype : numpy.dtype, *optional*
            Data type of the field values for a field defined on this space
            (default: numpy.float64).
Marco Selig's avatar
Marco Selig committed
185
186
187

        See Also
        --------
Ultimanet's avatar
Ultimanet committed
188
189
190
191
192
193
194
195
        point_space :  A class for unstructured lists of numbers.
        rg_space : A class for regular cartesian grids in arbitrary dimensions.
        hp_space : A class for the HEALPix discretization of the sphere
            [#]_.
        gl_space : A class for the Gauss-Legendre discretization of the sphere
            [#]_.
        lm_space : A class for spherical harmonic components.
        nested_space : A class for product spaces.
Marco Selig's avatar
Marco Selig committed
196

Ultimanet's avatar
Ultimanet committed
197
198
199
200
201
202
203
204
        References
        ----------
        .. [#] K.M. Gorski et al., 2005, "HEALPix: A Framework for
               High-Resolution Discretization and Fast Analysis of Data
               Distributed on the Sphere", *ApJ* 622..759G.
        .. [#] M. Reinecke and D. Sverre Seljebotn, 2013, "Libsharp - spherical
               harmonic transforms revisited";
               `arXiv:1303.4945 <http://www.arxiv.org/abs/1303.4945>`_
Marco Selig's avatar
Marco Selig committed
205
206
207

        Attributes
        ----------
Ultimanet's avatar
Ultimanet committed
208
209
210
211
212
213
214
215
216
217
        para : {single object, list of objects}
            This is a freeform list of parameters that derivatives of the space class can use.
        datatype : numpy.dtype
            Data type of the field values for a field defined on this space.
        discrete : bool
            Whether the space is inherently discrete (true) or a discretization
            of a continuous space (false).
        vol : numpy.ndarray
            An array of pixel volumes, only one component if the pixels all
            have the same volume.
Marco Selig's avatar
Marco Selig committed
218
    """
219
    def __init__(self, para=0, datatype=None):
Marco Selig's avatar
Marco Selig committed
220
        """
Ultimanet's avatar
Ultimanet committed
221
            Sets the attributes for a space class instance.
Marco Selig's avatar
Marco Selig committed
222
223
224

            Parameters
            ----------
Ultimanet's avatar
Ultimanet committed
225
226
227
228
229
230
            para : {single object, list of objects}, *optional*
                This is a freeform list of parameters that derivatives of the
                space class can use (default: 0).
            datatype : numpy.dtype, *optional*
                Data type of the field values for a field defined on this space
                (default: numpy.float64).
Marco Selig's avatar
Marco Selig committed
231

Ultimanet's avatar
Ultimanet committed
232
233
234
            Returns
            -------
            None
Marco Selig's avatar
Marco Selig committed
235
        """
Ultimanet's avatar
Ultimanet committed
236
        self.paradict = space_paradict(default=para)        
Marco Selig's avatar
Marco Selig committed
237

Ultimanet's avatar
Ultimanet committed
238
239
240
241
242
243
244
        ## check data type
        if(datatype is None):
            datatype = np.float64
        elif(datatype not in [np.int8,np.int16,np.int32,np.int64,np.float16,np.float32,np.float64,np.complex64,np.complex128]):
            about.warnings.cprint("WARNING: data type set to default.")
            datatype = np.float64
        self.datatype = datatype
Marco Selig's avatar
Marco Selig committed
245

Ultimanet's avatar
Ultimanet committed
246
247
248
249
250
251
252
253
254
255
        self.discrete = True
        self.vol = np.real(np.array([1],dtype=self.datatype))
        
    @property
    def para(self):
        return self.paradict['default']
    
    @para.setter
    def para(self, x):
        self.paradict['default'] = x
Marco Selig's avatar
Marco Selig committed
256

Ultimanet's avatar
Ultimanet committed
257
258
    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    def _freeze_config(self, dictionary):
Marco Selig's avatar
Marco Selig committed
259
        """
Ultimanet's avatar
Ultimanet committed
260
261
262
263
            a helper function which forms a hashable identifying object from 
            a dictionary which can be used as key of a dict
        """        
        return frozenset(dictionary.items())
Marco Selig's avatar
Marco Selig committed
264

265
266
267
    def copy(self):
        return space(para = self.para,
                     datatype = self.datatype) 
Marco Selig's avatar
Marco Selig committed
268
269

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Ultimanet's avatar
Ultimanet committed
270
271
272
273
    def getitem(self, data, key):
        raise NotImplementedError(about._errors.cstring(\
            "ERROR: no generic instance method 'getitem'."))
        
Marco Selig's avatar
Marco Selig committed
274

Ultimanet's avatar
Ultimanet committed
275
276
277
278
279
280
281
282
283
    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    def setitem(self, data, key):
        raise NotImplementedError(about._errors.cstring(\
            "ERROR: no generic instance method 'getitem'."))
        
    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++            
    def apply_scalar_function(self, x, function, inplace=False):
        raise NotImplementedError(about._errors.cstring(\
            "ERROR: no generic instance method 'apply_scalar_function'."))
Marco Selig's avatar
Marco Selig committed
284

Ultimanet's avatar
Ultimanet committed
285
286
287
288
289
290
291
292
293
    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++            
    def unary_operation(self, x, op=None):
        raise NotImplementedError(about._errors.cstring(\
            "ERROR: no generic instance method 'unary_operation'."))
    
    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++            
    def binary_operation(self, x, y, op=None):
        raise NotImplementedError(about._errors.cstring(\
            "ERROR: no generic instance method 'binary_operation'."))
Marco Selig's avatar
Marco Selig committed
294

Ultimanet's avatar
Ultimanet committed
295
    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++            
296
    def get_norm(self, x, q):
Ultimanet's avatar
Ultimanet committed
297
298
        raise NotImplementedError(about._errors.cstring(\
            "ERROR: no generic instance method 'norm'."))
Marco Selig's avatar
Marco Selig committed
299

300
    def get_shape(self):
Ultimanet's avatar
Ultimanet committed
301
302
        raise NotImplementedError(about._errors.cstring(\
            "ERROR: no generic instance method 'shape'."))
Marco Selig's avatar
Marco Selig committed
303

Ultimanet's avatar
Ultimanet committed
304
    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
305
    def get_dim(self,split=False):
Marco Selig's avatar
Marco Selig committed
306
        """
Ultimanet's avatar
Ultimanet committed
307
            Computes the dimension of the space, i.e.\  the number of pixels.
Marco Selig's avatar
Marco Selig committed
308
309
310

            Parameters
            ----------
Ultimanet's avatar
Ultimanet committed
311
312
313
            split : bool, *optional*
                Whether to return the dimension split up, i.e. the numbers of
                pixels in each direction, or not (default: False).
Marco Selig's avatar
Marco Selig committed
314

Ultimanet's avatar
Ultimanet committed
315
316
317
318
            Returns
            -------
            dim : {int, numpy.ndarray}
                Dimension(s) of the space.
Marco Selig's avatar
Marco Selig committed
319
        """
320
321
        raise NotImplementedError(about._errors.cstring(
                    "ERROR: no generic instance method 'dim'."))
Marco Selig's avatar
Marco Selig committed
322
323
324

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

325
    def get_dof(self):
Marco Selig's avatar
Marco Selig committed
326
        """
Ultimanet's avatar
Ultimanet committed
327
            Computes the number of degrees of freedom of the space.
Marco Selig's avatar
Marco Selig committed
328
329
330

            Returns
            -------
Ultimanet's avatar
Ultimanet committed
331
332
            dof : int
                Number of degrees of freedom of the space.
Marco Selig's avatar
Marco Selig committed
333
        """
334
335
        raise NotImplementedError(about._errors.cstring(
                    "ERROR: no generic instance method 'dof'."))
Marco Selig's avatar
Marco Selig committed
336
337
338

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Ultimanet's avatar
Ultimanet committed
339
    def enforce_power(self,spec,**kwargs):
Marco Selig's avatar
Marco Selig committed
340
        """
Ultimanet's avatar
Ultimanet committed
341
            Provides a valid power spectrum array from a given object.
Marco Selig's avatar
Marco Selig committed
342
343
344

            Parameters
            ----------
Ultimanet's avatar
Ultimanet committed
345
346
347
348
            spec : {scalar, list, numpy.ndarray, nifty.field, function}
                Fiducial power spectrum from which a valid power spectrum is to
                be calculated. Scalars are interpreted as constant power
                spectra.
Marco Selig's avatar
Marco Selig committed
349
350
351

            Returns
            -------
Ultimanet's avatar
Ultimanet committed
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
            spec : numpy.ndarray
                Valid power spectrum.

            Other parameters
            ----------------
            size : int, *optional*
                Number of bands the power spectrum shall have (default: None).
            kindex : numpy.ndarray, *optional*
                Scale of each band.
            codomain : nifty.space, *optional*
                A compatible codomain for power indexing (default: None).
            log : bool, *optional*
                Flag specifying if the spectral binning is performed on logarithmic
                scale or not; if set, the number of used bins is set
                automatically (if not given otherwise); by default no binning
                is done (default: None).
            nbin : integer, *optional*
                Number of used spectral bins; if given `log` is set to ``False``;
                integers below the minimum of 3 induce an automatic setting;
                by default no binning is done (default: None).
            binbounds : {list, array}, *optional*
                User specific inner boundaries of the bins, which are preferred
                over the above parameters; by default no binning is done
                (default: None).            vmin : {scalar, list, ndarray, field}, *optional*
                Lower limit of the uniform distribution if ``random == "uni"``
                (default: 0).
Marco Selig's avatar
Marco Selig committed
378
379

        """
380
381
        raise NotImplementedError(about._errors.cstring(
                    "ERROR: no generic instance method 'enforce_power'."))
Marco Selig's avatar
Marco Selig committed
382

Ultimanet's avatar
Ultimanet committed
383
384
385
    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    def set_power_indices(self,**kwargs):
Marco Selig's avatar
Marco Selig committed
386
        """
Ultimanet's avatar
Ultimanet committed
387
            Sets the (un)indexing objects for spectral indexing internally.
Marco Selig's avatar
Marco Selig committed
388
389
390

            Parameters
            ----------
Ultimanet's avatar
Ultimanet committed
391
392
393
394
395
396
397
398
399
400
401
402
403
            log : bool
                Flag specifying if the binning is performed on logarithmic
                scale or not; if set, the number of used bins is set
                automatically (if not given otherwise); by default no binning
                is done (default: None).
            nbin : integer
                Number of used bins; if given `log` is set to ``False``;
                integers below the minimum of 3 induce an automatic setting;
                by default no binning is done (default: None).
            binbounds : {list, array}
                User specific inner boundaries of the bins, which are preferred
                over the above parameters; by default no binning is done
                (default: None).
Marco Selig's avatar
Marco Selig committed
404
405
406
407
408

            Returns
            -------
            None

Ultimanet's avatar
Ultimanet committed
409
410
411
412
            See Also
            --------
            get_power_indices

Marco Selig's avatar
Marco Selig committed
413
        """
414
415
        raise NotImplementedError(about._errors.cstring(
                    "ERROR: no generic instance method 'set_power_indices'."))
Marco Selig's avatar
Marco Selig committed
416

Ultimanet's avatar
Ultimanet committed
417
    def get_power_indices(self,**kwargs):
Marco Selig's avatar
Marco Selig committed
418
        """
Ultimanet's avatar
Ultimanet committed
419
420
421
422
423
424
            Provides the (un)indexing objects for spectral indexing.

            Provides one-dimensional arrays containing the scales of the
            spectral bands and the numbers of modes per scale, and an array
            giving for each component of a field the corresponding index of a
            power spectrum as well as an Unindexing array.
Marco Selig's avatar
Marco Selig committed
425
426
427

            Parameters
            ----------
Ultimanet's avatar
Ultimanet committed
428
429
430
431
432
433
434
435
436
437
438
439
440
            log : bool
                Flag specifying if the binning is performed on logarithmic
                scale or not; if set, the number of used bins is set
                automatically (if not given otherwise); by default no binning
                is done (default: None).
            nbin : integer
                Number of used bins; if given `log` is set to ``False``;
                integers below the minimum of 3 induce an automatic setting;
                by default no binning is done (default: None).
            binbounds : {list, array}
                User specific inner boundaries of the bins, which are preferred
                over the above parameters; by default no binning is done
                (default: None).
Marco Selig's avatar
Marco Selig committed
441
442
443

            Returns
            -------
Ultimanet's avatar
Ultimanet committed
444
445
446
447
448
449
450
451
452
            kindex : numpy.ndarray
                Scale of each spectral band.
            rho : numpy.ndarray
                Number of modes per scale represented in the discretization.
            pindex : numpy.ndarray
                Indexing array giving the power spectrum index for each
                represented mode.
            pundex : numpy.ndarray
                Unindexing array undoing power spectrum indexing.
Marco Selig's avatar
Marco Selig committed
453

Ultimanet's avatar
Ultimanet committed
454
455
456
457
458
459
460
            Notes
            -----
            The ``kindex`` and ``rho`` are each one-dimensional arrays.
            The indexing array is of the same shape as a field living in this
            space and contains the indices of the associated bands.
            Indexing with the unindexing array undoes the indexing with the
            indexing array; i.e., ``power == power[pindex].flatten()[pundex]``.
Marco Selig's avatar
Marco Selig committed
461

Ultimanet's avatar
Ultimanet committed
462
463
464
            See Also
            --------
            set_power_indices
Marco Selig's avatar
Marco Selig committed
465
466

        """
467
468
        raise NotImplementedError(about._errors.cstring(
                "ERROR: no generic instance method 'get_power_indices'."))
Marco Selig's avatar
Marco Selig committed
469
470

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Ultimanet's avatar
Ultimanet committed
471
472
    
    def cast(self, x, verbose=False):
Marco Selig's avatar
Marco Selig committed
473
        """
Ultimanet's avatar
Ultimanet committed
474
475
476
            Computes valid field values from a given object, trying
            to translate the given data into a valid form. Thereby it is as 
            benevolent as possible. 
Marco Selig's avatar
Marco Selig committed
477
478
479

            Parameters
            ----------
Ultimanet's avatar
Ultimanet committed
480
481
            x : {float, numpy.ndarray, nifty.field}
                Object to be transformed into an array of valid field values.
Marco Selig's avatar
Marco Selig committed
482
483
484

            Returns
            -------
Ultimanet's avatar
Ultimanet committed
485
486
487
            x : numpy.ndarray, distributed_data_object
                Array containing the field values, which are compatible to the
                space.
Marco Selig's avatar
Marco Selig committed
488

Ultimanet's avatar
Ultimanet committed
489
490
491
492
493
            Other parameters
            ----------------
            verbose : bool, *optional*
                Whether the method should raise a warning if information is 
                lost during casting (default: False).
Marco Selig's avatar
Marco Selig committed
494
        """
Ultimanet's avatar
Ultimanet committed
495
        return self.enforce_values(x, extend=True)
Marco Selig's avatar
Marco Selig committed
496

Ultimanet's avatar
Ultimanet committed
497
    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Marco Selig's avatar
Marco Selig committed
498

Ultimanet's avatar
Ultimanet committed
499
    def enforce_shape(self,x):
Marco Selig's avatar
Marco Selig committed
500
        """
Ultimanet's avatar
Ultimanet committed
501
502
            Shapes an array of valid field values correctly, according to the
            specifications of the space instance.
Marco Selig's avatar
Marco Selig committed
503

Ultimanet's avatar
Ultimanet committed
504
505
506
507
            Parameters
            ----------
            x : numpy.ndarray
                Array containing the field values to be put into shape.
Marco Selig's avatar
Marco Selig committed
508

Ultimanet's avatar
Ultimanet committed
509
510
511
512
513
514
            Returns
            -------
            y : numpy.ndarray
                Correctly shaped array.
        """
        raise NotImplementedError(about._errors.cstring("ERROR: no generic instance method 'enforce_shape'."))
Marco Selig's avatar
Marco Selig committed
515
516
517

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Ultimanet's avatar
Ultimanet committed
518
519
520
521
    def enforce_values(self,x,extend=True):
        """
            Computes valid field values from a given object, according to the
            constraints from the space instance.
Marco Selig's avatar
Marco Selig committed
522

Ultimanet's avatar
Ultimanet committed
523
524
525
526
            Parameters
            ----------
            x : {float, numpy.ndarray, nifty.field}
                Object to be transformed into an array of valid field values.
Marco Selig's avatar
Marco Selig committed
527

Ultimanet's avatar
Ultimanet committed
528
529
530
531
            Returns
            -------
            x : numpy.ndarray
                Array containing the valid field values.
Marco Selig's avatar
Marco Selig committed
532

Ultimanet's avatar
Ultimanet committed
533
534
535
536
537
538
539
            Other parameters
            ----------------
            extend : bool, *optional*
                Whether a scalar is extented to a constant array or not
                (default: True).
        """
        raise NotImplementedError(about._errors.cstring("ERROR: no generic instance method 'enforce_values'."))
Marco Selig's avatar
Marco Selig committed
540
541
542
543


    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Ultimanet's avatar
Ultimanet committed
544
    def get_random_values(self,**kwargs):
Marco Selig's avatar
Marco Selig committed
545
        """
Ultimanet's avatar
Ultimanet committed
546
547
            Generates random field values according to the specifications given
            by the parameters.
Marco Selig's avatar
Marco Selig committed
548

Ultimanet's avatar
Ultimanet committed
549
550
551
552
553
554
555
            Returns
            -------
            x : numpy.ndarray
                Valid field values.

            Other parameters
            ----------------
Marco Selig's avatar
Marco Selig committed
556
            random : string, *optional*
Ultimanet's avatar
Ultimanet committed
557
558
559
                Specifies the probability distribution from which the random
                numbers are to be drawn.
                Supported distributions are:
Marco Selig's avatar
Marco Selig committed
560
561

                - "pm1" (uniform distribution over {+1,-1} or {+1,+i,-1,-i}
Ultimanet's avatar
Ultimanet committed
562
563
                - "gau" (normal distribution with zero-mean and a given standard
                    deviation or variance)
Marco Selig's avatar
Marco Selig committed
564
565
566
567
                - "syn" (synthesizes from a given power spectrum)
                - "uni" (uniform distribution over [vmin,vmax[)

                (default: None).
Ultimanet's avatar
Ultimanet committed
568
569
570
571
572
573
574
            dev : float, *optional*
                Standard deviation (default: 1).
            var : float, *optional*
                Variance, overriding `dev` if both are specified
                (default: 1).
            spec : {scalar, list, numpy.ndarray, nifty.field, function}, *optional*
                Power spectrum (default: 1).
575
576
577
578
            pindex : numpy.ndarray, *optional*
                Indexing array giving the power spectrum index of each band
                (default: None).
            kindex : numpy.ndarray, *optional*
Ultimanet's avatar
Ultimanet committed
579
                Scale of each band (default: None).
580
            codomain : nifty.space, *optional*
Ultimanet's avatar
Ultimanet committed
581
                A compatible codomain with power indices (default: None).
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
            log : bool, *optional*
                Flag specifying if the spectral binning is performed on logarithmic
                scale or not; if set, the number of used bins is set
                automatically (if not given otherwise); by default no binning
                is done (default: None).
            nbin : integer, *optional*
                Number of used spectral bins; if given `log` is set to ``False``;
                integers below the minimum of 3 induce an automatic setting;
                by default no binning is done (default: None).
            binbounds : {list, array}, *optional*
                User specific inner boundaries of the bins, which are preferred
                over the above parameters; by default no binning is done
                (default: None).            vmin : {scalar, list, ndarray, field}, *optional*
                Lower limit of the uniform distribution if ``random == "uni"``
                (default: 0).
Ultimanet's avatar
Ultimanet committed
597
598
599
600
            vmin : float, *optional*
                Lower limit for a uniform distribution (default: 0).
            vmax : float, *optional*
                Upper limit for a uniform distribution (default: 1).
Marco Selig's avatar
Marco Selig committed
601
        """
Ultimanet's avatar
Ultimanet committed
602
        raise NotImplementedError(about._errors.cstring("ERROR: no generic instance method 'get_random_values'."))
Marco Selig's avatar
Marco Selig committed
603
604
605

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Ultimanet's avatar
Ultimanet committed
606
    def check_codomain(self,codomain):
Marco Selig's avatar
Marco Selig committed
607
        """
Ultimanet's avatar
Ultimanet committed
608
            Checks whether a given codomain is compatible to the space or not.
Marco Selig's avatar
Marco Selig committed
609
610
611

            Parameters
            ----------
Ultimanet's avatar
Ultimanet committed
612
613
            codomain : nifty.space
                Space to be checked for compatibility.
Marco Selig's avatar
Marco Selig committed
614
615
616

            Returns
            -------
Ultimanet's avatar
Ultimanet committed
617
618
            check : bool
                Whether or not the given codomain is compatible to the space.
Marco Selig's avatar
Marco Selig committed
619
        """
Ultimanet's avatar
Ultimanet committed
620
        raise NotImplementedError(about._errors.cstring("ERROR: no generic instance method 'check_codomain'."))
Marco Selig's avatar
Marco Selig committed
621
622
623

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Ultimanet's avatar
Ultimanet committed
624
    def get_codomain(self,**kwargs):
Marco Selig's avatar
Marco Selig committed
625
        """
Ultimanet's avatar
Ultimanet committed
626
627
628
            Generates a compatible codomain to which transformations are
            reasonable, usually either the position basis or the basis of
            harmonic eigenmodes.
Marco Selig's avatar
Marco Selig committed
629
630
631

            Parameters
            ----------
Ultimanet's avatar
Ultimanet committed
632
633
634
635
636
637
638
639
640
            coname : string, *optional*
                String specifying a desired codomain (default: None).
            cozerocenter : {bool, numpy.ndarray}, *optional*
                Whether or not the grid is zerocentered for each axis or not
                (default: None).
            conest : list, *optional*
                List of nested spaces of the codomain (default: None).
            coorder : list, *optional*
                Permutation of the list of nested spaces (default: None).
Marco Selig's avatar
Marco Selig committed
641
642
643

            Returns
            -------
Ultimanet's avatar
Ultimanet committed
644
645
646
647
            codomain : nifty.space
                A compatible codomain.
        """
        raise NotImplementedError(about._errors.cstring("ERROR: no generic instance method 'get_codomain'."))
Marco Selig's avatar
Marco Selig committed
648

Ultimanet's avatar
Ultimanet committed
649
    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Marco Selig's avatar
Marco Selig committed
650

Ultimanet's avatar
Ultimanet committed
651
    def get_meta_volume(self,total=False):
Marco Selig's avatar
Marco Selig committed
652
        """
Ultimanet's avatar
Ultimanet committed
653
            Calculates the meta volumes.
Marco Selig's avatar
Marco Selig committed
654

Ultimanet's avatar
Ultimanet committed
655
656
657
658
            The meta volumes are the volumes associated with each component of
            a field, taking into account field components that are not
            explicitly included in the array of field values but are determined
            by symmetry conditions.
Marco Selig's avatar
Marco Selig committed
659

Ultimanet's avatar
Ultimanet committed
660
661
662
663
664
            Parameters
            ----------
            total : bool, *optional*
                Whether to return the total meta volume of the space or the
                individual ones of each field component (default: False).
Marco Selig's avatar
Marco Selig committed
665

Ultimanet's avatar
Ultimanet committed
666
667
668
669
670
671
            Returns
            -------
            mol : {numpy.ndarray, float}
                Meta volume of the field components or the complete space.
        """
        raise NotImplementedError(about._errors.cstring("ERROR: no generic instance method 'get_meta_volume'."))
Marco Selig's avatar
Marco Selig committed
672
673
674

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Ultimanet's avatar
Ultimanet committed
675
    def calc_weight(self,x,power=1):
Marco Selig's avatar
Marco Selig committed
676
        """
Ultimanet's avatar
Ultimanet committed
677
678
            Weights a given array of field values with the pixel volumes (not
            the meta volumes) to a given power.
Marco Selig's avatar
Marco Selig committed
679
680
681

            Parameters
            ----------
Ultimanet's avatar
Ultimanet committed
682
683
684
685
            x : numpy.ndarray
                Array to be weighted.
            power : float, *optional*
                Power of the pixel volumes to be used (default: 1).
Marco Selig's avatar
Marco Selig committed
686
687
688

            Returns
            -------
Ultimanet's avatar
Ultimanet committed
689
690
691
692
            y : numpy.ndarray
                Weighted array.
        """
        raise NotImplementedError(about._errors.cstring("ERROR: no generic instance method 'calc_weight'."))
Marco Selig's avatar
Marco Selig committed
693

694
695
696
    def get_weight(self, power=1):
        raise NotImplementedError(about._errors.cstring("ERROR: no generic instance method 'get_weight'."))
        
Marco Selig's avatar
Marco Selig committed
697
698
    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Ultimanet's avatar
Ultimanet committed
699
700
701
702
    def calc_dot(self,x,y):
        """
            Computes the discrete inner product of two given arrays of field
            values.
Marco Selig's avatar
Marco Selig committed
703

Ultimanet's avatar
Ultimanet committed
704
705
706
707
708
709
            Parameters
            ----------
            x : numpy.ndarray
                First array
            y : numpy.ndarray
                Second array
Marco Selig's avatar
Marco Selig committed
710

Ultimanet's avatar
Ultimanet committed
711
712
713
714
715
716
717
            Returns
            -------
            dot : scalar
                Inner product of the two arrays.
        """
        raise NotImplementedError(about._errors.cstring(\
            "ERROR: no generic instance method 'dot'."))
Marco Selig's avatar
Marco Selig committed
718
719
720



Ultimanet's avatar
Ultimanet committed
721
    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Marco Selig's avatar
Marco Selig committed
722

Ultimanet's avatar
Ultimanet committed
723
724
725
    def calc_transform(self,x,codomain=None,**kwargs):
        """
            Computes the transform of a given array of field values.
Marco Selig's avatar
Marco Selig committed
726
727
728

            Parameters
            ----------
Ultimanet's avatar
Ultimanet committed
729
730
731
            x : numpy.ndarray
                Array to be transformed.
            codomain : nifty.space, *optional*
732
                codomain space to which the transformation shall map
Ultimanet's avatar
Ultimanet committed
733
                (default: self).
Marco Selig's avatar
Marco Selig committed
734
735
736

            Returns
            -------
Ultimanet's avatar
Ultimanet committed
737
738
            Tx : numpy.ndarray
                Transformed array
739

Ultimanet's avatar
Ultimanet committed
740
741
742
743
            Other parameters
            ----------------
            iter : int, *optional*
                Number of iterations performed in specific transformations.
744
        """
Ultimanet's avatar
Ultimanet committed
745
        raise NotImplementedError(about._errors.cstring("ERROR: no generic instance method 'calc_transform'."))
Marco Selig's avatar
Marco Selig committed
746
747

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
748

Ultimanet's avatar
Ultimanet committed
749
    def calc_smooth(self,x,sigma=0,**kwargs):
Marco Selig's avatar
Marco Selig committed
750
        """
Ultimanet's avatar
Ultimanet committed
751
752
            Smoothes an array of field values by convolution with a Gaussian
            kernel.
Marco Selig's avatar
Marco Selig committed
753
754
755

            Parameters
            ----------
Ultimanet's avatar
Ultimanet committed
756
757
758
759
760
            x : numpy.ndarray
                Array of field values to be smoothed.
            sigma : float, *optional*
                Standard deviation of the Gaussian kernel, specified in units
                of length in position space (default: 0).
Marco Selig's avatar
Marco Selig committed
761
762
763

            Returns
            -------
Ultimanet's avatar
Ultimanet committed
764
765
            Gx : numpy.ndarray
                Smoothed array.
Marco Selig's avatar
Marco Selig committed
766

Ultimanet's avatar
Ultimanet committed
767
768
769
770
            Other parameters
            ----------------
            iter : int, *optional*
                Number of iterations (default: 0).
Marco Selig's avatar
Marco Selig committed
771
        """
Ultimanet's avatar
Ultimanet committed
772
        raise NotImplementedError(about._errors.cstring("ERROR: no generic instance method 'calc_smooth'."))
Marco Selig's avatar
Marco Selig committed
773
774
775

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Ultimanet's avatar
Ultimanet committed
776
    def calc_power(self,x,**kwargs):
Marco Selig's avatar
Marco Selig committed
777
        """
Ultimanet's avatar
Ultimanet committed
778
            Computes the power of an array of field values.
Marco Selig's avatar
Marco Selig committed
779
780
781

            Parameters
            ----------
Ultimanet's avatar
Ultimanet committed
782
783
784
            x : numpy.ndarray
                Array containing the field values of which the power is to be
                calculated.
Marco Selig's avatar
Marco Selig committed
785
786
787
788

            Returns
            -------
            spec : numpy.ndarray
Ultimanet's avatar
Ultimanet committed
789
                Power contained in the input array.
Marco Selig's avatar
Marco Selig committed
790
791
792

            Other parameters
            ----------------
Ultimanet's avatar
Ultimanet committed
793
794
795
            pindex : numpy.ndarray, *optional*
                Indexing array assigning the input array components to
                components of the power spectrum (default: None).
796
            kindex : numpy.ndarray, *optional*
Ultimanet's avatar
Ultimanet committed
797
798
799
800
                Scale corresponding to each band in the power spectrum
                (default: None).
            rho : numpy.ndarray, *optional*
                Number of degrees of freedom per band (default: None).
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
            codomain : nifty.space, *optional*
                A compatible codomain for power indexing (default: None).
            log : bool, *optional*
                Flag specifying if the spectral binning is performed on logarithmic
                scale or not; if set, the number of used bins is set
                automatically (if not given otherwise); by default no binning
                is done (default: None).
            nbin : integer, *optional*
                Number of used spectral bins; if given `log` is set to ``False``;
                integers below the minimum of 3 induce an automatic setting;
                by default no binning is done (default: None).
            binbounds : {list, array}, *optional*
                User specific inner boundaries of the bins, which are preferred
                over the above parameters; by default no binning is done
                (default: None).            vmin : {scalar, list, ndarray, field}, *optional*
                Lower limit of the uniform distribution if ``random == "uni"``
                (default: 0).
818

Marco Selig's avatar
Marco Selig committed
819
        """
Ultimanet's avatar
Ultimanet committed
820
        raise NotImplementedError(about._errors.cstring("ERROR: no generic instance method 'calc_power'."))
Marco Selig's avatar
Marco Selig committed
821
822
823

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Ultimanet's avatar
Ultimanet committed
824
    def get_plot(self,x,**kwargs):
Marco Selig's avatar
Marco Selig committed
825
        """
Ultimanet's avatar
Ultimanet committed
826
827
            Creates a plot of field values according to the specifications
            given by the parameters.
828
829
830

            Parameters
            ----------
Ultimanet's avatar
Ultimanet committed
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
            x : numpy.ndarray
                Array containing the field values.

            Returns
            -------
            None

            Other parameters
            ----------------
            title : string, *optional*
                Title of the plot (default: "").
            vmin : float, *optional*
                Minimum value to be displayed (default: ``min(x)``).
            vmax : float, *optional*
                Maximum value to be displayed (default: ``max(x)``).
            power : bool, *optional*
                Whether to plot the power contained in the field or the field
                values themselves (default: False).
            unit : string, *optional*
                Unit of the field values (default: "").
            norm : string, *optional*
                Scaling of the field values before plotting (default: None).
            cmap : matplotlib.colors.LinearSegmentedColormap, *optional*
                Color map to be used for two-dimensional plots (default: None).
            cbar : bool, *optional*
                Whether to show the color bar or not (default: True).
            other : {single object, tuple of objects}, *optional*
                Object or tuple of objects to be added, where objects can be
                scalars, arrays, or fields (default: None).
            legend : bool, *optional*
                Whether to show the legend or not (default: False).
            mono : bool, *optional*
                Whether to plot the monopole or not (default: True).
            save : string, *optional*
                Valid file name where the figure is to be stored, by default
                the figure is not saved (default: False).
            error : {float, numpy.ndarray, nifty.field}, *optional*
                Object indicating some confidence interval to be plotted
                (default: None).
            kindex : numpy.ndarray, *optional*
                Scale corresponding to each band in the power spectrum
                (default: None).
            codomain : nifty.space, *optional*
                A compatible codomain for power indexing (default: None).
            log : bool, *optional*
                Flag specifying if the spectral binning is performed on logarithmic
877
878
879
                scale or not; if set, the number of used bins is set
                automatically (if not given otherwise); by default no binning
                is done (default: None).
Ultimanet's avatar
Ultimanet committed
880
881
            nbin : integer, *optional*
                Number of used spectral bins; if given `log` is set to ``False``;
882
                integers below the minimum of 3 induce an automatic setting;
883
                by default no binning is done (default: None).
Ultimanet's avatar
Ultimanet committed
884
            binbounds : {list, array}, *optional*
885
886
                User specific inner boundaries of the bins, which are preferred
                over the above parameters; by default no binning is done
Ultimanet's avatar
Ultimanet committed
887
888
889
890
891
                (default: None).            vmin : {scalar, list, ndarray, field}, *optional*
                Lower limit of the uniform distribution if ``random == "uni"``
                (default: 0).
            iter : int, *optional*
                Number of iterations (default: 0).
Marco Selig's avatar
Marco Selig committed
892
893

        """
Ultimanet's avatar
Ultimanet committed
894
        raise NotImplementedError(about._errors.cstring("ERROR: no generic instance method 'get_plot'."))
Marco Selig's avatar
Marco Selig committed
895

Ultimanet's avatar
Ultimanet committed
896
    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Marco Selig's avatar
Marco Selig committed
897

Ultimanet's avatar
Ultimanet committed
898
899
    def __repr__(self):
        return "<nifty_core.space>"
Marco Selig's avatar
Marco Selig committed
900

Ultimanet's avatar
Ultimanet committed
901
902
    def __str__(self):
        return "nifty_core.space instance\n- para     = "+str(self.para)+"\n- datatype = numpy."+str(np.result_type(self.datatype))
Marco Selig's avatar
Marco Selig committed
903

Ultimanet's avatar
Ultimanet committed
904
    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Marco Selig's avatar
Marco Selig committed
905

Ultimanet's avatar
Ultimanet committed
906
907
    def __len__(self):
        return int(self.dim(split=False))
Marco Selig's avatar
Marco Selig committed
908

909
    ## _identiftier returns an object which contains all information needed 
Ultimanet's avatar
Ultimanet committed
910
911
    ## to uniquely idetnify a space. It returns a (immutable) tuple which therefore
    ## can be compored. 
912
    def _identifier(self):
Ultimanet's avatar
Ultimanet committed
913
        return tuple(sorted(vars(self).items()))
Marco Selig's avatar
Marco Selig committed
914

Ultimanet's avatar
Ultimanet committed
915
    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Marco Selig's avatar
Marco Selig committed
916

Ultimanet's avatar
Ultimanet committed
917
918
919
920
921
922
    def _meta_vars(self): ## > captures all nonstandard properties
        mars = np.array([ii[1] for ii in vars(self).iteritems() if ii[0] not in ["para","datatype","discrete","vol","power_indices"]],dtype=np.object)
        if(np.size(mars)==0):
            return None
        else:
            return mars
Marco Selig's avatar
Marco Selig committed
923

Ultima's avatar
Ultima committed
924
    def __eq__(self, x): ## __eq__ : self == x
925
926
927
928
        if isinstance(x, type(self)):
            return self._identifier() == x._identifier()
        else:
            return False
Ultima's avatar
Ultima committed
929
930
931
    
    def __ne__(self, x):
        return not self.__eq__(x)
Marco Selig's avatar
Marco Selig committed
932

Ultimanet's avatar
Ultimanet committed
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
    def __lt__(self,x): ## __lt__ : self < x
        if(isinstance(x,space)):
            if(not isinstance(x,type(self)))or(np.size(self.para)!=np.size(x.para))or(np.size(self.vol)!=np.size(x.vol)):
                raise ValueError(about._errors.cstring("ERROR: incomparable spaces."))
            elif(self.discrete==x.discrete): ## data types are ignored
                for ii in xrange(np.size(self.para)):
                    if(self.para[ii]<x.para[ii]):
                        return True
                    elif(self.para[ii]>x.para[ii]):
                        return False
                for ii in xrange(np.size(self.vol)):
                    if(self.vol[ii]<x.vol[ii]):
                        return True
                    elif(self.vol[ii]>x.vol[ii]):
                        return False
                s_mars = self._meta_vars()
                x_mars = x._meta_vars()
                for ii in xrange(np.size(s_mars)):
                    if(np.all(s_mars[ii]<x_mars[ii])):
                        return True
                    elif(np.any(s_mars[ii]>x_mars[ii])):
                        break
        return False
Marco Selig's avatar
Marco Selig committed
956

Ultimanet's avatar
Ultimanet committed
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
    def __le__(self,x): ## __le__ : self <= x
        if(isinstance(x,space)):
            if(not isinstance(x,type(self)))or(np.size(self.para)!=np.size(x.para))or(np.size(self.vol)!=np.size(x.vol)):
                raise ValueError(about._errors.cstring("ERROR: incomparable spaces."))
            elif(self.discrete==x.discrete): ## data types are ignored
                for ii in xrange(np.size(self.para)):
                    if(self.para[ii]<x.para[ii]):
                        return True
                    if(self.para[ii]>x.para[ii]):
                        return False
                for ii in xrange(np.size(self.vol)):
                    if(self.vol[ii]<x.vol[ii]):
                        return True
                    if(self.vol[ii]>x.vol[ii]):
                        return False
                s_mars = self._meta_vars()
                x_mars = x._meta_vars()
                for ii in xrange(np.size(s_mars)):
                    if(np.all(s_mars[ii]<x_mars[ii])):
                        return True
                    elif(np.any(s_mars[ii]>x_mars[ii])):
                        return False
                return True
        return False
Marco Selig's avatar
Marco Selig committed
981

Ultimanet's avatar
Ultimanet committed
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
    def __gt__(self,x): ## __gt__ : self > x
        if(isinstance(x,space)):
            if(not isinstance(x,type(self)))or(np.size(self.para)!=np.size(x.para))or(np.size(self.vol)!=np.size(x.vol)):
                raise ValueError(about._errors.cstring("ERROR: incomparable spaces."))
            elif(self.discrete==x.discrete): ## data types are ignored
                for ii in xrange(np.size(self.para)):
                    if(self.para[ii]>x.para[ii]):
                        return True
                    elif(self.para[ii]<x.para[ii]):
                        break
                for ii in xrange(np.size(self.vol)):
                    if(self.vol[ii]>x.vol[ii]):
                        return True
                    elif(self.vol[ii]<x.vol[ii]):
                        break
                s_mars = self._meta_vars()
                x_mars = x._meta_vars()
                for ii in xrange(np.size(s_mars)):
                    if(np.all(s_mars[ii]>x_mars[ii])):
                        return True
                    elif(np.any(s_mars[ii]<x_mars[ii])):
                        break
        return False
Marco Selig's avatar
Marco Selig committed
1005

Ultimanet's avatar
Ultimanet committed
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
    def __ge__(self,x): ## __ge__ : self >= x
        if(isinstance(x,space)):
            if(not isinstance(x,type(self)))or(np.size(self.para)!=np.size(x.para))or(np.size(self.vol)!=np.size(x.vol)):
                raise ValueError(about._errors.cstring("ERROR: incomparable spaces."))
            elif(self.discrete==x.discrete): ## data types are ignored
                for ii in xrange(np.size(self.para)):
                    if(self.para[ii]>x.para[ii]):
                        return True
                    if(self.para[ii]<x.para[ii]):
                        return False
                for ii in xrange(np.size(self.vol)):
                    if(self.vol[ii]>x.vol[ii]):
                        return True
                    if(self.vol[ii]<x.vol[ii]):
                        return False
                s_mars = self._meta_vars()
                x_mars = x._meta_vars()
                for ii in xrange(np.size(s_mars)):
                    if(np.all(s_mars[ii]>x_mars[ii])):
                        return True
                    elif(np.any(s_mars[ii]<x_mars[ii])):
                        return False
                return True
        return False
Marco Selig's avatar
Marco Selig committed
1030

Ultimanet's avatar
Ultimanet committed
1031
##=============================================================================
Marco Selig's avatar
Marco Selig committed
1032
1033
1034



Ultimanet's avatar
Ultimanet committed
1035
##-----------------------------------------------------------------------------
Marco Selig's avatar
Marco Selig committed
1036

Ultimanet's avatar
Ultimanet committed
1037
class point_space(space):
Marco Selig's avatar
Marco Selig committed
1038
    """
Ultimanet's avatar
Ultimanet committed
1039
1040
1041
1042
1043
1044
1045
        ..                            __             __
        ..                          /__/           /  /_
        ..      ______    ______    __   __ ___   /   _/
        ..    /   _   | /   _   | /  / /   _   | /  /
        ..   /  /_/  / /  /_/  / /  / /  / /  / /  /_
        ..  /   ____/  \______/ /__/ /__/ /__/  \___/  space class
        .. /__/
Marco Selig's avatar
Marco Selig committed
1046

Ultimanet's avatar
Ultimanet committed
1047
        NIFTY subclass for unstructured spaces.
Marco Selig's avatar
Marco Selig committed
1048

Ultimanet's avatar
Ultimanet committed
1049
1050
        Unstructured spaces are lists of values without any geometrical
        information.
Marco Selig's avatar
Marco Selig committed
1051
1052
1053

        Parameters
        ----------
Ultimanet's avatar
Ultimanet committed
1054
1055
1056
1057
        num : int
            Number of points.
        datatype : numpy.dtype, *optional*
            Data type of the field values (default: None).
Marco Selig's avatar
Marco Selig committed
1058

Ultimanet's avatar
Ultimanet committed
1059
        Attributes
Marco Selig's avatar
Marco Selig committed
1060
        ----------
Ultimanet's avatar
Ultimanet committed
1061
1062
1063
1064
1065
1066
1067
1068
1069
        para : numpy.ndarray
            Array containing the number of points.
        datatype : numpy.dtype
            Data type of the field values.
        discrete : bool
            Parameter captioning the fact that a :py:class:`point_space` is
            always discrete.
        vol : numpy.ndarray
            Pixel volume of the :py:class:`point_space`, which is always 1.
Marco Selig's avatar
Marco Selig committed
1070
    """
1071
    def __init__(self, num, datatype=None, datamodel='d2o'):
Ultimanet's avatar
Ultimanet committed
1072
1073
        """
            Sets the attributes for a point_space class instance.
Marco Selig's avatar
Marco Selig committed
1074

Ultimanet's avatar
Ultimanet committed
1075
1076
1077
1078
1079
1080
            Parameters
            ----------
            num : int
                Number of points.
            datatype : numpy.dtype, *optional*
                Data type of the field values (default: numpy.float64).
Marco Selig's avatar
Marco Selig committed
1081

Ultimanet's avatar
Ultimanet committed
1082
1083
1084
1085
1086
1087
1088
            Returns
            -------
            None.
        """
        self.paradict = point_space_paradict(num=num)       
        
        ## check datatype
1089
        if (datatype is None):
Ultimanet's avatar
Ultimanet committed
1090
            datatype = np.float64
1091
1092
1093
1094
1095
1096
1097
1098
1099
        elif (datatype not in [np.int8, 
                              np.int16, 
                              np.int32,
                              np.int64,
                              np.float16,
                              np.float32,
                              np.float64,
                              np.complex64,
                              np.complex128]):
Ultimanet's avatar
Ultimanet committed
1100
1101
1102
            about.warnings.cprint("WARNING: data type set to default.")
            datatype = np.float64
        self.datatype = datatype
1103
1104
1105
1106
1107
1108
1109
1110
        
        if datamodel not in ['np', 'd2o']:
            about.warnings.cprint("WARNING: datamodel set to default.")
            self.datamodel = 'd2o'
        else:
            self.datamodel = datamodel
                
        
Ultimanet's avatar
Ultimanet committed
1111
        self.discrete = True
1112
        self.vol = np.real(np.array([1], dtype=self.datatype))
Marco Selig's avatar
Marco Selig committed
1113

1114

Ultimanet's avatar
Ultimanet committed
1115
1116
1117
1118
1119
1120
1121
1122
    @property
    def para(self):
        temp = np.array([self.paradict['num']], dtype=int)
        return temp
    
    @para.setter
    def para(self, x):
        self.paradict['num'] = x
1123
1124
1125
1126
1127
1128
1129
     
     
    def copy(self):
        return point_space(num = self.paradict['num'],
                           datatype = self.datatype,
                           datamodel = self.datamodel)
     
Ultimanet's avatar
Ultimanet committed
1130
1131
1132
1133
    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    def getitem(self, data, key):
        return data[key]
        
Marco Selig's avatar
Marco Selig committed
1134

Ultimanet's avatar
Ultimanet committed
1135
1136
    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    def setitem(self, data, update, key):
1137
        data[key] = update
Marco Selig's avatar
Marco Selig committed
1138

Ultimanet's avatar
Ultimanet committed
1139
1140
    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    def apply_scalar_function(self, x, function, inplace=False):
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
        if self.datamodel == 'np':
            if inplace == False:        
                try: 
                    return function(x)
                except:
                    return np.vectorize(function)(x)
            else:
                try:
                    x[:] = function(x)
                except:
                    x[:] = np.vectorize(function)(x)
                return x
            
        elif self.datamodel == 'd2o':
            return x.apply_scalar_function(function, inplace=inplace)
Ultimanet's avatar
Ultimanet committed
1156
        else:
1157
1158
1159
            raise NotImplementedError(about._errors.cstring(
                "ERROR: function is not implemented for given datamodel."))

Ultimanet's avatar
Ultimanet committed
1160
1161
1162
1163
1164
1165
1166
1167
1168
    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++          
    
    
    def unary_operation(self, x, op='None', **kwargs):
        """
        x must be a numpy array which is compatible with the space!
        Valid operations are
        
        """
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
        if self.datamodel == 'np':                                
            def _argmin(z, **kwargs):
                ind = np.argmin(z, **kwargs)
                if np.isscalar(ind):
                    ind = np.unravel_index(ind, z.shape, order='C')
                    if(len(ind)==1):
                        return ind[0]
                return ind         
    
            def _argmax(z, **kwargs):
                ind = np.argmax(z, **kwargs)
                if np.isscalar(ind):
                    ind = np.unravel_index(ind, z.shape, order='C')
                    if(len(ind)==1):
                        return ind[0]
                return ind         
            
            
            translation = {"pos" : lambda y: getattr(y, '__pos__')(),
                            "neg" : lambda y: getattr(y, '__neg__')(),
                            "abs" : lambda y: getattr(y, '__abs__')(),
                            "nanmin" : np.nanmin,  
                            "min" : np.amin,
                            "nanmax" : np.nanmax,
                            "max" : np.amax,
                            "med" : np.median,
                            "mean" : np.mean,
                            "std" : np.std,
                            "var" : np.var,
                            "argmin" : _argmin,
                            "argmin_flat" : np.argmin,
                            "argmax" : _argmax, 
                            "argmax_flat" : np.argmax,
                            "conjugate" : np.conjugate,
                            "sum" : np.sum,
                            "prod" : np.prod,
                            "None" : lambda y: y}

        elif self.datamodel == 'd2o':
            translation = {"pos" : lambda y: getattr(y, '__pos__')(),
Ultimanet's avatar
Ultimanet committed
1209
1210
                        "neg" : lambda y: getattr(y, '__neg__')(),
                        "abs" : lambda y: getattr(y, '__abs__')(),
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
                        "nanmin" : lambda y: getattr(y, 'nanmin')(),
                        "min" : lambda y: getattr(y, 'amin')(),
                        "nanmax" : lambda y: getattr(y, 'nanmax')(),
                        "max" : lambda y: getattr(y, 'amax')(),
                        "median" : lambda y: getattr(y, 'median')(),
                        "mean" : lambda y: getattr(y, 'mean')(),
                        "std" : lambda y: getattr(y, 'std')(),
                        "var" : lambda y: getattr(y, 'var')(),
                        "argmin" : lambda y: getattr(y, 'argmin')(),
                        "argmin_flat" : lambda y: getattr(y, 'argmin_flat')(),
                        "argmax" : lambda y: getattr(y, 'argmax')(),
                        "argmax_flat" : lambda y: getattr(y, 'argmax_flat')(),
                        "conjugate" : lambda y: getattr(y, 'conjugate')(),
                        "sum" : lambda y: getattr(y, 'sum')(),
                        "prod" : lambda y: getattr(y, 'prod')(),
Ultimanet's avatar
Ultimanet committed
1226
                        "None" : lambda y: y}
1227
1228
1229
        else:
            raise NotImplementedError(about._errors.cstring(
                "ERROR: function is not implemented for given datamodel."))
Ultimanet's avatar
Ultimanet committed
1230
1231
                
        return translation[op](x, **kwargs)      
Marco Selig's avatar
Marco Selig committed
1232

Ultimanet's avatar
Ultimanet committed
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++            
    def binary_operation(self, x, y, op='None', cast=0):
        
        translation = {"add" : lambda z: getattr(z, '__add__'),
                        "radd" : lambda z: getattr(z, '__radd__'),
                        "iadd" : lambda z: getattr(z, '__iadd__'),
                        "sub" : lambda z: getattr(z, '__sub__'),
                        "rsub" : lambda z: getattr(z, '__rsub__'),
                        "isub" : lambda z: getattr(z, '__isub__'),
                        "mul" : lambda z: getattr(z, '__mul__'),
                        "rmul" : lambda z: getattr(z, '__rmul__'),
                        "imul" : lambda z: getattr(z, '__imul__'),
                        "div" : lambda z: getattr(z, '__div__'),
                        "rdiv" : lambda z: getattr(z, '__rdiv__'),
                        "idiv" : lambda z: getattr(z, '__idiv__'),
                        "pow" : lambda z: getattr(z, '__pow__'),
                        "rpow" : lambda z: getattr(z, '__rpow__'),
                        "ipow" : lambda z: getattr(z, '__ipow__'),
                        "None" : lambda z: lambda u: u}
        
        if (cast & 1) != 0:
            x = self.cast(x)
        if (cast & 2) != 0:
            y = self.cast(y)        
        
        return translation[op](x)(y)
Marco Selig's avatar
Marco Selig committed
1259

Ultimanet's avatar
Ultimanet committed
1260
1261
1262
1263
    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++            
    def norm(self, x, q=2):
        """
            Computes the Lq-norm of field values.
Marco Selig's avatar
Marco Selig committed
1264

Ultimanet's avatar
Ultimanet committed
1265
1266
1267
1268
1269
1270
            Parameters
            ----------
            x : np.ndarray 
                The data array 
            q : scalar
                Parameter q of the Lq-norm (default: 2).
Marco Selig's avatar
Marco Selig committed
1271

Ultimanet's avatar
Ultimanet committed
1272
1273
1274
1275
            Returns
            -------
            norm : scalar
                The Lq-norm of the field values.
Marco Selig's avatar
Marco Selig committed
1276

Ultimanet's avatar
Ultimanet committed
1277
        """
Marco Selig's avatar
Marco Selig committed
1278

Ultimanet's avatar
Ultimanet committed
1279
        
1280
        if q == 2:
Ultimanet's avatar
Ultimanet committed
1281
1282
1283
1284
1285
1286
1287
            result = self.calc_dot(x,x)
        else:
            y = x**(q-1)        
            result = self.calc_dot(x,y)
        
        result = result**(1./q)
        return result 
Marco Selig's avatar
Marco Selig committed
1288
1289
1290



Ultimanet's avatar
Ultimanet committed
1291
    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1292
    def get_num(self):
Ultimanet's avatar
Ultimanet committed
1293
1294
        """
            Returns the number of points.
Marco Selig's avatar
Marco Selig committed
1295

Ultimanet's avatar
Ultimanet committed
1296
1297
1298
1299
1300
            Returns
            -------
            num : int
                Number of points.
        """
1301
        return np.prod(self.get_shape())
Marco Selig's avatar
Marco Selig committed
1302

1303
    def get_shape(self):
Ultimanet's avatar
Ultimanet committed
1304
        return np.array([self.paradict['num']])
Marco Selig's avatar
Marco Selig committed
1305

Ultimanet's avatar
Ultimanet committed
1306
        
1307
    def get_dim(self, split=False):
Ultimanet's avatar
Ultimanet committed
1308
1309
        """
            Computes the dimension of the space, i.e.\  the number of points.
Marco Selig's avatar
Marco Selig committed
1310

Ultimanet's avatar
Ultimanet committed
1311
1312
1313
1314
1315
            Parameters
            ----------
            split : bool, *optional*
                Whether to return the dimension as an array with one component
                or as a scalar (default: False).
Marco Selig's avatar
Marco Selig committed
1316

Ultimanet's avatar
Ultimanet committed
1317
1318
1319
1320
1321
1322
            Returns
            -------
            dim : {int, numpy.ndarray}
                Dimension(s) of the space.
        """
        ## dim = num
1323
1324
1325
1326
        if split==True:
            about.warnings.cflush("WARNING: split keyword is  deprecated!"+\
                                "Please use self.get_shape() in future!")
            return self.get_shape()
Ultimanet's avatar
Ultimanet committed
1327
1328
            #return np.array([self.para[0]],dtype=np.int)
        else:
1329
            return np.prod(self.get_shape())
Ultimanet's avatar
Ultimanet committed
1330
            #return self.para[0]
Marco Selig's avatar
Marco Selig committed
1331

Ultimanet's avatar
Ultimanet committed
1332
    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Marco Selig's avatar
Marco Selig committed
1333

1334
    def get_dof(self):
Ultimanet's avatar
Ultimanet committed
1335
1336
1337
1338
        """