test_minimizers.py 4.88 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
Martin Reinecke's avatar
Martin Reinecke committed
14
# Copyright(C) 2013-2018 Max-Planck-Society
Martin Reinecke's avatar
Martin Reinecke committed
15
16
17
18
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.

Matevz, Sraml (sraml)'s avatar
Matevz, Sraml (sraml) committed
19
import unittest
20
import numpy as np
Martin Reinecke's avatar
Martin Reinecke committed
21
from numpy.testing import assert_allclose, assert_equal
Martin Reinecke's avatar
Martin Reinecke committed
22
import nifty4 as ift
Martin Reinecke's avatar
changes    
Martin Reinecke committed
23
from itertools import product
Matevz, Sraml (sraml)'s avatar
Matevz, Sraml (sraml) committed
24
from test.common import expand
Martin Reinecke's avatar
Martin Reinecke committed
25
from nose.plugins.skip import SkipTest
Matevz, Sraml (sraml)'s avatar
Matevz, Sraml (sraml) committed
26

Martin Reinecke's avatar
changes    
Martin Reinecke committed
27
28
spaces = [ift.RGSpace([1024], distances=0.123), ift.HPSpace(32)]
minimizers = [ift.SteepestDescent, ift.RelaxedNewton, ift.VL_BFGS,
Martin Reinecke's avatar
Martin Reinecke committed
29
30
              ift.ConjugateGradient, ift.NonlinearCG,
              ift.NewtonCG, ift.L_BFGS_B]
31

Martin Reinecke's avatar
Martin Reinecke committed
32
33
34
minimizers2 = [ift.RelaxedNewton, ift.VL_BFGS, ift.NonlinearCG,
               ift.NewtonCG, ift.L_BFGS_B]

35

Martin Reinecke's avatar
changes    
Martin Reinecke committed
36
class Test_Minimizers(unittest.TestCase):
37

Martin Reinecke's avatar
changes    
Martin Reinecke committed
38
    @expand(product(minimizers, spaces))
39
    def test_quadratic_minimization(self, minimizer_class, space):
40
        np.random.seed(42)
Martin Reinecke's avatar
changes    
Martin Reinecke committed
41
42
43
        starting_point = ift.Field.from_random('normal', domain=space)*10
        covariance_diagonal = ift.Field.from_random(
                                  'uniform', domain=space) + 0.5
44
        covariance = ift.DiagonalOperator(covariance_diagonal)
45
        required_result = ift.Field.ones(space, dtype=np.float64)
46

47
48
        IC = ift.GradientNormController(tol_abs_gradnorm=1e-5,
                                        iteration_limit=1000)
Martin Reinecke's avatar
Martin Reinecke committed
49
50
51
52
        try:
            minimizer = minimizer_class(controller=IC)
            energy = ift.QuadraticEnergy(A=covariance, b=required_result,
                                         position=starting_point)
53

Martin Reinecke's avatar
Martin Reinecke committed
54
55
56
57
58
            (energy, convergence) = minimizer(energy)
        except NotImplementedError:
            raise SkipTest

        assert_equal(convergence, IC.CONVERGED)
Martin Reinecke's avatar
Martin Reinecke committed
59
60
        assert_allclose(energy.position.to_global_data(),
                        1./covariance_diagonal.to_global_data(),
Martin Reinecke's avatar
changes    
Martin Reinecke committed
61
                        rtol=1e-3, atol=1e-3)
Martin Reinecke's avatar
Martin Reinecke committed
62

Martin Reinecke's avatar
Martin Reinecke committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
    @expand(product(minimizers2))
    def test_rosenbrock(self, minimizer_class):
        try:
            from scipy.optimize import rosen, rosen_der, rosen_hess_prod
        except ImportError:
            raise SkipTest
        np.random.seed(42)
        space = ift.UnstructuredDomain((2,))
        starting_point = ift.Field.from_random('normal', domain=space)*10

        class RBEnergy(ift.Energy):
            def __init__(self, position):
                super(RBEnergy, self).__init__(position)

            @property
            def value(self):
                return rosen(self._position.to_global_data().copy())

            @property
            def gradient(self):
                inp = self._position.to_global_data().copy()
                out = ift.Field.from_global_data(space, rosen_der(inp))
                return out

            @property
            def curvature(self):
                class RBCurv(ift.EndomorphicOperator):
                    def __init__(self, loc):
                        self._loc = loc.to_global_data().copy()

                    @property
                    def domain(self):
                        return space

                    @property
                    def capability(self):
                        return self.TIMES

                    def apply(self, x, mode):
                        self._check_input(x, mode)
                        inp = x.to_global_data().copy()
                        out = ift.Field.from_global_data(
                            space, rosen_hess_prod(self._loc.copy(), inp))
                        return out
Martin Reinecke's avatar
Martin Reinecke committed
107

Martin Reinecke's avatar
Martin Reinecke committed
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
                t1 = ift.GradientNormController(tol_abs_gradnorm=1e-5,
                                                iteration_limit=1000)
                t2 = ift.ConjugateGradient(controller=t1)
                return ift.InversionEnabler(RBCurv(self._position),
                                            inverter=t2)

        IC = ift.GradientNormController(tol_abs_gradnorm=1e-5,
                                        iteration_limit=10000)
        try:
            minimizer = minimizer_class(controller=IC)
            energy = RBEnergy(position=starting_point)

            (energy, convergence) = minimizer(energy)
        except NotImplementedError:
            raise SkipTest

        assert_equal(convergence, IC.CONVERGED)
        assert_allclose(energy.position.to_global_data(), 1.,
                        rtol=1e-3, atol=1e-3)