smoothing_operator.py 11.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# NIFTy
# Copyright (C) 2017  Theo Steininger
#
# Author: Theo Steininger
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

Jait Dixit's avatar
Jait Dixit committed
19
20
21
22
23
import numpy as np

import nifty.nifty_utilities as utilities
from nifty.operators.endomorphic_operator import EndomorphicOperator
from nifty.operators.fft_operator import FFTOperator
Mihai Baltac's avatar
Mihai Baltac committed
24
from nifty.operators.smoothing_operator import smooth_util as su
25
from d2o import STRATEGIES
Jait Dixit's avatar
Jait Dixit committed
26

27

28
class SmoothingOperator(EndomorphicOperator):
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

    """NIFTY class for smoothing operators.
    The NIFTy SmoothingOperator smooths Fields, with a given kernel length.
    Fields which are not living over a PowerSpace are smoothed
    via a gaussian convolution. Fields living over the PowerSpace are directly smoothed.

    Parameters
    ----------
    domain : NIFTy.Space
        The Space on which the operator acts
    sigma : float
        Sets the length of the Gaussian convolution kernel
    log_distances : boolean
        States whether the convolution happens on the logarithmic grid or not.

    Attributes
    ----------
    sigma : float
        Sets the length of the Gaussian convolution kernel
    log_distances : boolean
        States whether the convolution happens on the logarithmic grid or not.

    Raises
    ------
    ValueError
        Raised if
            * the given domain inherits more than one space. The
              SmoothingOperator acts only on one Space.

    Notes
    -----

    Examples
    --------
    >>> x = RGSpace(5)
    >>> S = SmoothingOperator(x, sigma=1.)
    >>> f = Field(x, val=[1,2,3,4,5])
    >>> S.times(f).val
    <distributed_data_object>
    array([ 3.,  3.,  3.,  3.,  3.])

    See Also
    --------
    DiagonalOperator, SmoothingOperator,
    PropagatorOperator, ProjectionOperator,
    ComposedOperator

    """



Jait Dixit's avatar
Jait Dixit committed
80
    # ---Overwritten properties and methods---
81
82
83
    def __init__(self, domain=(), sigma=0, log_distances=False,
                 default_spaces=None):
        super(SmoothingOperator, self).__init__(default_spaces)
84
85

        self._domain = self._parse_domain(domain)
Jait Dixit's avatar
Jait Dixit committed
86
87
88

        if len(self.domain) != 1:
            raise ValueError(
89
90
                'ERROR: SmoothOperator accepts only exactly one '
                'space as input domain.'
Jait Dixit's avatar
Jait Dixit committed
91
            )
Jait Dixit's avatar
Jait Dixit committed
92

93
94
95
        self.sigma = sigma
        self.log_distances = log_distances

96
        self._direct_smoothing_width = 3.
Jait Dixit's avatar
Jait Dixit committed
97

98
    def _inverse_times(self, x, spaces):
99
        return self._smoothing_helper(x, spaces, inverse=True)
Jait Dixit's avatar
Jait Dixit committed
100

101
    def _times(self, x, spaces):
102
        return self._smoothing_helper(x, spaces, inverse=False)
Jait Dixit's avatar
Jait Dixit committed
103

Jait Dixit's avatar
Jait Dixit committed
104
    # ---Mandatory properties and methods---
105
106
107
108
    @property
    def domain(self):
        return self._domain

Jait Dixit's avatar
Jait Dixit committed
109
    @property
Martin Reinecke's avatar
Martin Reinecke committed
110
    def self_adjoint(self):
theos's avatar
theos committed
111
        return True
Jait Dixit's avatar
Jait Dixit committed
112

Jait Dixit's avatar
Jait Dixit committed
113
114
115
    @property
    def unitary(self):
        return False
Jait Dixit's avatar
Jait Dixit committed
116
117

    # ---Added properties and methods---
118

Jait Dixit's avatar
Jait Dixit committed
119
120
121
122
    @property
    def sigma(self):
        return self._sigma

123
124
125
126
127
128
129
130
131
132
133
134
135
    @sigma.setter
    def sigma(self, sigma):
        self._sigma = np.float(sigma)

    @property
    def log_distances(self):
        return self._log_distances

    @log_distances.setter
    def log_distances(self, log_distances):
        self._log_distances = bool(log_distances)

    def _smoothing_helper(self, x, spaces, inverse):
theos's avatar
theos committed
136
137
138
139
140
141
142
143
144
145
        if self.sigma == 0:
            return x.copy()

        # the domain of the smoothing operator contains exactly one space.
        # Hence, if spaces is None, but we passed LinearOperator's
        # _check_input_compatibility, we know that x is also solely defined
        # on that space
        if spaces is None:
            spaces = (0,)
        else:
Jait Dixit's avatar
Jait Dixit committed
146
147
            spaces = utilities.cast_axis_to_tuple(spaces, len(x.domain))

148
149
150
151
152
153
154
        try:
            result = self._fft_smoothing(x, spaces, inverse)
        except ValueError:
            result = self._direct_smoothing(x, spaces, inverse)
        return result

    def _fft_smoothing(self, x, spaces, inverse):
theos's avatar
theos committed
155
        Transformator = FFTOperator(x.domain[spaces[0]])
Jait Dixit's avatar
Jait Dixit committed
156

theos's avatar
theos committed
157
158
159
160
161
        # transform to the (global-)default codomain and perform all remaining
        # steps therein
        transformed_x = Transformator(x, spaces=spaces)
        codomain = transformed_x.domain[spaces[0]]
        coaxes = transformed_x.domain_axes[spaces[0]]
162

theos's avatar
theos committed
163
164
165
        # create the kernel using the knowledge of codomain about itself
        axes_local_distribution_strategy = \
            transformed_x.val.get_axes_local_distribution_strategy(axes=coaxes)
Jait Dixit's avatar
Jait Dixit committed
166

167
        kernel = codomain.get_distance_array(
168
169
170
171
172
            distribution_strategy=axes_local_distribution_strategy)

        if self.log_distances:
            kernel.apply_scalar_function(np.log, inplace=True)

theos's avatar
theos committed
173
        kernel.apply_scalar_function(
174
            codomain.get_fft_smoothing_kernel_function(self.sigma),
theos's avatar
theos committed
175
            inplace=True)
Jait Dixit's avatar
Jait Dixit committed
176

theos's avatar
theos committed
177
178
179
180
181
        # now, apply the kernel to transformed_x
        # this is done node-locally utilizing numpys reshaping in order to
        # apply the kernel to the correct axes
        local_transformed_x = transformed_x.val.get_local_data(copy=False)
        local_kernel = kernel.get_local_data(copy=False)
Jait Dixit's avatar
Jait Dixit committed
182

183
        reshaper = [transformed_x.shape[i] if i in coaxes else 1
theos's avatar
theos committed
184
185
                    for i in xrange(len(transformed_x.shape))]
        local_kernel = np.reshape(local_kernel, reshaper)
Jait Dixit's avatar
Jait Dixit committed
186

theos's avatar
theos committed
187
188
189
190
191
        # apply the kernel
        if inverse:
            local_transformed_x /= local_kernel
        else:
            local_transformed_x *= local_kernel
Jait Dixit's avatar
Jait Dixit committed
192

theos's avatar
theos committed
193
        transformed_x.val.set_local_data(local_transformed_x, copy=False)
Jait Dixit's avatar
Jait Dixit committed
194

195
196
197
#to be discussed tomorrow!!!

        smoothed_x = Transformator.adjoint_times(transformed_x, spaces=spaces)
theos's avatar
theos committed
198
199
200

        result = x.copy_empty()
        result.set_val(smoothed_x, copy=False)
Jait Dixit's avatar
Jait Dixit committed
201

theos's avatar
theos committed
202
        return result
203
204
205
206
207
208

    def _direct_smoothing(self, x, spaces, inverse):
        # infer affected axes
        # we rely on the knowledge, that `spaces` is a tuple with length 1.
        affected_axes = x.domain_axes[spaces[0]]

209
210
211
212
213
        if len(affected_axes) > 1:
            raise ValueError("By this implementation only one-dimensional "
                             "spaces can be smoothed directly.")

        affected_axis = affected_axes[0]
214
215

        distance_array = x.domain[spaces[0]].get_distance_array(
216
217
            distribution_strategy='not')
        distance_array = distance_array.get_local_data(copy=False)
218
219

        if self.log_distances:
220
            np.log(distance_array, out=distance_array)
221
222
223
224
225
226
227
228
229

        # collect the local data + ghost cells
        local_data_Q = False

        if x.distribution_strategy == 'not':
            local_data_Q = True
        elif x.distribution_strategy in STRATEGIES['slicing']:
            # infer the local start/end based on the slicing information of
            # x's d2o. Only gets non-trivial for axis==0.
230
            if 0 != affected_axis:
231
232
                local_data_Q = True
            else:
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
                start_index = x.val.distributor.local_start
                start_distance = distance_array[start_index]
                augmented_start_distance = \
                    (start_distance - self._direct_smoothing_width*self.sigma)
                augmented_start_index = \
                    np.searchsorted(distance_array, augmented_start_distance)
                true_start = start_index - augmented_start_index
                end_index = x.val.distributor.local_end
                end_distance = distance_array[end_index-1]
                augmented_end_distance = \
                    (end_distance + self._direct_smoothing_width*self.sigma)
                augmented_end_index = \
                    np.searchsorted(distance_array, augmented_end_distance)
                true_end = true_start + x.val.distributor.local_length
                augmented_slice = slice(augmented_start_index,
                                        augmented_end_index)

250
251
252
253
254
                augmented_data = x.val.get_data(augmented_slice,
                                                local_keys=True,
                                                copy=False)
                augmented_data = augmented_data.get_local_data(copy=False)

255
                augmented_distance_array = distance_array[augmented_slice]
256
257

        else:
258
259
            raise ValueError("Direct smoothing not implemented for given"
                             "distribution strategy.")
260
261
262
263
264

        if local_data_Q:
            # if the needed data resides on the nodes already, the necessary
            # are the same; no matter what the distribution strategy was.
            augmented_data = x.val.get_local_data(copy=False)
265
266
267
            augmented_distance_array = distance_array
            true_start = 0
            true_end = x.shape[affected_axis]
268
269

        # perform the convolution along the affected axes
270
271
272
273
274
275
276
277
278
        # currently only one axis is supported
        data_axis = affected_axes[0]
        local_result = self._direct_smoothing_single_axis(
                                                    augmented_data,
                                                    data_axis,
                                                    augmented_distance_array,
                                                    true_start,
                                                    true_end,
                                                    inverse)
279
280
281
282
283
        result = x.copy_empty()
        result.val.set_local_data(local_result, copy=False)
        return result

    def _direct_smoothing_single_axis(self, data, data_axis, distances,
284
                                      true_start, true_end, inverse):
285
        if inverse:
286
            true_sigma = 1. / self.sigma
287
288
289
        else:
            true_sigma = self.sigma

290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
        if data.dtype is np.dtype('float32'):
            distances = distances.astype(np.float32, copy=False)
            smoothed_data = su.apply_along_axis_f(
                                  data_axis, data,
                                  startindex=true_start,
                                  endindex=true_end,
                                  distances=distances,
                                  smooth_length=true_sigma,
                                  smoothing_width=self._direct_smoothing_width)
        elif data.dtype is np.dtype('float64'):
            distances = distances.astype(np.float64, copy=False)
            smoothed_data = su.apply_along_axis(
                                  data_axis, data,
                                  startindex=true_start,
                                  endindex=true_end,
                                  distances=distances,
                                  smooth_length=true_sigma,
                                  smoothing_width=self._direct_smoothing_width)

        elif np.issubdtype(data.dtype, np.complexfloating):
            real = self._direct_smoothing_single_axis(data.real,
                                                      data_axis,
                                                      distances,
                                                      true_start,
                                                      true_end, inverse)
            imag = self._direct_smoothing_single_axis(data.imag,
                                                      data_axis,
                                                      distances,
                                                      true_start,
                                                      true_end, inverse)

            return real + 1j*imag

323
        else:
324
325
            raise TypeError("Dtype %s not supported" % str(data.dtype))

326
        return smoothed_data