test_power_space.py 5.29 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# NIFTy
# Copyright (C) 2017  Theo Steininger
#
# Author: Theo Steininger
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

19
20
21
22
23
24
25
26
from __future__ import division

import unittest
import numpy as np

from d2o import distributed_data_object
from numpy.testing import assert_, assert_equal, assert_almost_equal,\
        assert_raises
Theo Steininger's avatar
Theo Steininger committed
27
from nifty import PowerSpace, RGSpace, Space
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
from types import NoneType
from test.common import expand

# [harmonic_domain, distribution_strategy,
#  log, nbin, binbounds, dtype, expected]
CONSTRUCTOR_CONFIGS = [
    [1, 'not', False, None, None, None, {'error': ValueError}],
    [RGSpace((8,)), 'not', False, None, None, None, {'error': ValueError}],
    [RGSpace((8,), harmonic=True), 'not', False, None, None, None, {
        'harmonic': True,
        'shape': (5,),
        'dim': 5,
        'total_volume': 8.0,
        'harmonic_domain': RGSpace((8,), harmonic=True),
        'log': False,
        'nbin': None,
        'binbounds': None,
        'pindex': distributed_data_object([0, 1, 2, 3, 4, 3, 2, 1]),
        'kindex': np.array([0., 1., 2., 3., 4.]),
        'rho': np.array([1, 2, 2, 2, 1]),
        'pundex': np.array([0, 1, 2, 3, 4]),
        'k_array': np.array([0., 1., 2., 3., 4., 3., 2., 1.]),
        'dtype': np.dtype('float64')
        }],
    [RGSpace((8,), harmonic=True), 'not', True, None, None, None, {
        'harmonic': True,
        'shape': (2,),
        'dim': 2,
        'total_volume': 8.0,
        'harmonic_domain': RGSpace((8,), harmonic=True),
        'log': True,
        'nbin': None,
        'binbounds': None,
        'pindex': distributed_data_object([0, 1, 1, 1, 1, 1, 1, 1]),
        'kindex': np.array([0., 2.28571429]),
        'rho': np.array([1, 7]),
        'pundex': np.array([0, 1]),
        'k_array': np.array([0., 2.28571429, 2.28571429, 2.28571429,
                             2.28571429, 2.28571429, 2.28571429, 2.28571429]),
        'dtype': np.dtype('float64')
        }],
    ]


def get_distance_array_configs():
Martin Reinecke's avatar
Martin Reinecke committed
73
    da_0 = np.array([0, 1.0, 1.41421356, 2., 2.23606798, 2.82842712])
74
    return [
Martin Reinecke's avatar
Martin Reinecke committed
75
        [RGSpace((4, 4), harmonic=True),  da_0],
76
77
78
79
        ]


def get_weight_configs():
Martin Reinecke's avatar
Martin Reinecke committed
80
81
82
83
84
85
86
87
88
    np.random.seed(42)

    # power 1
    w_0_x = np.random.rand(32, 16, 6)
    # RGSpace((4, 4), harmonic=True)
    # using rho directly
    weight_0 = np.array([1, 4, 4, 2, 4, 1])
    weight_0 = weight_0.reshape([1, 1, 6])
    w_0_res = w_0_x * weight_0
89
90
    return [
        [RGSpace((4, 4), harmonic=True),
Martin Reinecke's avatar
Martin Reinecke committed
91
            w_0_x, 1, (2,), False, w_0_res],
92
        [RGSpace((4, 4), harmonic=True),
Martin Reinecke's avatar
Martin Reinecke committed
93
            w_0_x.copy(), 1, (2,), True, w_0_res],
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
        ]


class PowerSpaceInterfaceTest(unittest.TestCase):
    @expand([
        ['harmonic_domain', Space],
        ['log', bool],
        ['nbin', (int, NoneType)],
        ['binbounds', (list, NoneType)],
        ['pindex', distributed_data_object],
        ['kindex', np.ndarray],
        ['rho', np.ndarray],
        ['pundex', np.ndarray],
        ['k_array', distributed_data_object],
        ])
    def test_property_ret_type(self, attribute, expected_type):
        r = RGSpace((4, 4), harmonic=True)
        p = PowerSpace(r)
        assert_(isinstance(getattr(p, attribute), expected_type))


class PowerSpaceFunctionalityTest(unittest.TestCase):
    @expand(CONSTRUCTOR_CONFIGS)
    def test_constructor(self, harmonic_domain, distribution_strategy, log,
                         nbin, binbounds, dtype, expected):
        if 'error' in expected:
            with assert_raises(expected['error']):
                PowerSpace(harmonic_domain=harmonic_domain,
                           distribution_strategy=distribution_strategy,
                           log=log, nbin=nbin, binbounds=binbounds,
                           dtype=dtype)
        else:
            p = PowerSpace(harmonic_domain=harmonic_domain,
                           distribution_strategy=distribution_strategy,
                           log=log, nbin=nbin, binbounds=binbounds,
                           dtype=dtype)
            for key, value in expected.iteritems():
                if isinstance(value, np.ndarray):
                    assert_almost_equal(getattr(p, key), value)
                else:
                    assert_equal(getattr(p, key), value)

    @expand(get_distance_array_configs())
    def test_distance_array(self, harmonic_domain, expected):
        p = PowerSpace(harmonic_domain=harmonic_domain)
        assert_almost_equal(p.get_distance_array('not'), expected)

    @expand(get_weight_configs())
    def test_weight(self, harmonic_domain, x, power, axes,
                    inplace, expected):
        p = PowerSpace(harmonic_domain=harmonic_domain)
        res = p.weight(x, power, axes, inplace)
        assert_almost_equal(res, expected)
        if inplace:
            assert_(x is res)