space.py 6.3 KB
Newer Older
1
2
3
4
5
# NIFTy
# Copyright (C) 2017  Theo Steininger
#
# Author: Theo Steininger
#
6
7
8
9
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
10
#
11
12
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
13
14
15
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
16
# You should have received a copy of the GNU General Public License
17
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Marco Selig's avatar
Marco Selig committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

"""
    ..                  __   ____   __
    ..                /__/ /   _/ /  /_
    ..      __ ___    __  /  /_  /   _/  __   __
    ..    /   _   | /  / /   _/ /  /   /  / /  /
    ..   /  / /  / /  / /  /   /  /_  /  /_/  /
    ..  /__/ /__/ /__/ /__/    \___/  \___   /  core
    ..                               /______/

    .. The NIFTY project homepage is http://www.mpa-garching.mpg.de/ift/nifty/

    NIFTY [#]_, "Numerical Information Field Theory", is a versatile
    library designed to enable the development of signal inference algorithms
    that operate regardless of the underlying spatial grid and its resolution.
    Its object-oriented framework is written in Python, although it accesses
    libraries written in Cython, C++, and C for efficiency.

    NIFTY offers a toolkit that abstracts discretized representations of
    continuous spaces, fields in these spaces, and operators acting on fields
    into classes. Thereby, the correct normalization of operations on fields is
    taken care of automatically without concerning the user. This allows for an
    abstract formulation and programming of inference algorithms, including
    those derived within information field theory. Thus, NIFTY permits its user
Marco Selig's avatar
Marco Selig committed
42
    to rapidly prototype algorithms in 1D and then apply the developed code in
Marco Selig's avatar
Marco Selig committed
43
44
45
46
47
    higher-dimensional settings of real world problems. The set of spaces on
    which NIFTY operates comprises point sets, n-dimensional regular grids,
    spherical spaces, their harmonic counterparts, and product spaces
    constructed as combinations of those.

48
49
50
51
52
53
54
    References
    ----------
    .. [#] Selig et al., "NIFTY -- Numerical Information Field Theory --
        a versatile Python library for signal inference",
        `A&A, vol. 554, id. A26 <http://dx.doi.org/10.1051/0004-6361/201321236>`_,
        2013; `arXiv:1301.4499 <http://www.arxiv.org/abs/1301.4499>`_

Marco Selig's avatar
Marco Selig committed
55
56
57
58
59
60
    Class & Feature Overview
    ------------------------
    The NIFTY library features three main classes: **spaces** that represent
    certain grids, **fields** that are defined on spaces, and **operators**
    that apply to fields.

61
62
    .. Overview of all (core) classes:
    ..
Marco Selig's avatar
Marco Selig committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
    .. - switch
    .. - notification
    .. - _about
    .. - random
    .. - space
    ..     - point_space
    ..     - rg_space
    ..     - lm_space
    ..     - gl_space
    ..     - hp_space
    ..     - nested_space
    .. - field
    .. - operator
    ..     - diagonal_operator
    ..         - power_operator
    ..     - projection_operator
    ..     - vecvec_operator
    ..     - response_operator
    .. - probing
    ..     - trace_probing
    ..     - diagonal_probing

85
86
    Overview of the main classes and functions:

Marco Selig's avatar
Marco Selig committed
87
88
    .. automodule:: nifty

89
90
91
92
93
94
95
96
97
98
99
100
101
102
    - :py:class:`space`
        - :py:class:`point_space`
        - :py:class:`rg_space`
        - :py:class:`lm_space`
        - :py:class:`gl_space`
        - :py:class:`hp_space`
        - :py:class:`nested_space`
    - :py:class:`field`
    - :py:class:`operator`
        - :py:class:`diagonal_operator`
            - :py:class:`power_operator`
        - :py:class:`projection_operator`
        - :py:class:`vecvec_operator`
        - :py:class:`response_operator`
Marco Selig's avatar
Marco Selig committed
103

104
        .. currentmodule:: nifty.nifty_tools
Marco Selig's avatar
Marco Selig committed
105

106
107
        - :py:class:`invertible_operator`
        - :py:class:`propagator_operator`
Marco Selig's avatar
Marco Selig committed
108

109
        .. currentmodule:: nifty.nifty_explicit
Marco Selig's avatar
Marco Selig committed
110

111
        - :py:class:`explicit_operator`
Marco Selig's avatar
Marco Selig committed
112

113
    .. automodule:: nifty
Marco Selig's avatar
Marco Selig committed
114

115
116
117
    - :py:class:`probing`
        - :py:class:`trace_probing`
        - :py:class:`diagonal_probing`
Marco Selig's avatar
Marco Selig committed
118

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
        .. currentmodule:: nifty.nifty_explicit

        - :py:class:`explicit_probing`

    .. currentmodule:: nifty.nifty_tools

    - :py:class:`conjugate_gradient`
    - :py:class:`steepest_descent`

    .. currentmodule:: nifty.nifty_explicit

    - :py:func:`explicify`

    .. currentmodule:: nifty.nifty_power

    - :py:func:`weight_power`,
      :py:func:`smooth_power`,
      :py:func:`infer_power`,
      :py:func:`interpolate_power`
Marco Selig's avatar
Marco Selig committed
138
139
140

"""
from __future__ import division
141
142
143

import abc

Marco Selig's avatar
Marco Selig committed
144
145
import numpy as np

146
from nifty.domain_object import DomainObject
Theo Steininger's avatar
Theo Steininger committed
147

148

149
class Space(DomainObject):
150
    def __init__(self, dtype=np.dtype('float')):
Theo Steininger's avatar
Theo Steininger committed
151
152
153
        """
            Parameters
            ----------
154
            dtype : numpy.dtype, *optional*
Theo Steininger's avatar
Theo Steininger committed
155
                Data type of the field values (default: numpy.float64).
Marco Selig's avatar
Marco Selig committed
156

Theo Steininger's avatar
Theo Steininger committed
157
158
159
160
            Returns
            -------
            None.
        """
161

162
        # parse dtype
163
164
165
        casted_dtype = np.result_type(dtype, np.float64)
        if casted_dtype != dtype:
            self.Logger.warning("Input dtype reset to: %s" % str(casted_dtype))
166

167
168
        super(Space, self).__init__(dtype=casted_dtype)
        self._ignore_for_hash += ['_global_id']
169

170
171
172
    @abc.abstractproperty
    def harmonic(self):
        raise NotImplementedError
173

174
    @abc.abstractproperty
175
    def total_volume(self):
176
177
        raise NotImplementedError(
            "There is no generic volume for the Space base class.")
178

179
180
181
    @abc.abstractmethod
    def copy(self):
        return self.__class__(dtype=self.dtype)
182

183
    def get_distance_array(self, distribution_strategy):
184
        raise NotImplementedError(
185
186
            "There is no generic distance structure for Space base class.")

187
    def get_fft_smoothing_kernel_function(self, sigma):
188
189
        raise NotImplementedError(
            "There is no generic co-smoothing kernel for Space base class.")
190

191
192
    def hermitian_decomposition(self, x, axes=None,
                                preserve_gaussian_variance=False):
193
194
        raise NotImplementedError

195
    def __repr__(self):
Theo Steininger's avatar
Theo Steininger committed
196
197
        string = ""
        string += str(type(self)) + "\n"
198
        string += "dtype: " + str(self.dtype) + "\n"
Theo Steininger's avatar
Theo Steininger committed
199
        return string