rg_space.py 11.3 KB
Newer Older
1
2
3
4
5
# NIFTy
# Copyright (C) 2017  Theo Steininger
#
# Author: Theo Steininger
#
6
7
8
9
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
10
#
11
12
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
13
14
15
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
16
# You should have received a copy of the GNU General Public License
17
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Marco Selig's avatar
Marco Selig committed
18
19
20
21
22
23
24
25
26
27

"""
    ..                  __   ____   __
    ..                /__/ /   _/ /  /_
    ..      __ ___    __  /  /_  /   _/  __   __
    ..    /   _   | /  / /   _/ /  /   /  / /  /
    ..   /  / /  / /  / /  /   /  /_  /  /_/  /
    ..  /__/ /__/ /__/ /__/    \___/  \___   /  rg
    ..                               /______/

Marco Selig's avatar
Marco Selig committed
28
    NIFTY submodule for regular Cartesian grids.
Marco Selig's avatar
Marco Selig committed
29
30
31

"""
from __future__ import division
Ultimanet's avatar
Ultimanet committed
32

Marco Selig's avatar
Marco Selig committed
33
import numpy as np
Ultimanet's avatar
Ultimanet committed
34

35
36
from d2o import distributed_data_object,\
                STRATEGIES as DISTRIBUTION_STRATEGIES
37

38
from nifty.spaces.space import Space
csongor's avatar
csongor committed
39

40
41
import nifty.plotting as plt

Marco Selig's avatar
Marco Selig committed
42

Theo Steininger's avatar
Theo Steininger committed
43
class RGSpace(Space):
Marco Selig's avatar
Marco Selig committed
44
45
46
47
48
49
50
51
52
53
54
    """
        ..      _____   _______
        ..    /   __/ /   _   /
        ..   /  /    /  /_/  /
        ..  /__/     \____  /  space class
        ..          /______/

        NIFTY subclass for spaces of regular Cartesian grids.

        Attributes
        ----------
55
        dtype : numpy.dtype
Marco Selig's avatar
Marco Selig committed
56
57
            Data type of the field values for a field defined on this space,
            either ``numpy.float64`` or ``numpy.complex128``.
Martin Reinecke's avatar
Martin Reinecke committed
58
        harmonic : bool
Marco Selig's avatar
Marco Selig committed
59
            Whether or not the grid represents a Fourier basis.
Martin Reinecke's avatar
Martin Reinecke committed
60
61
62
63
64
        zerocenter : {bool, numpy.ndarray}, *optional*
            Whether the Fourier zero-mode is located in the center of the grid
            (or the center of each axis speparately) or not (default: True).
        distances : {float, numpy.ndarray}, *optional*
            Distance between two grid points along each axis (default: None).
Marco Selig's avatar
Marco Selig committed
65
66
    """

67
68
    # ---Overwritten properties and methods---

69
    def __init__(self, shape=(1,), zerocenter=False, distances=None,
70
                 harmonic=False, dtype=None):
Marco Selig's avatar
Marco Selig committed
71
72
73
74
75
        """
            Sets the attributes for an rg_space class instance.

            Parameters
            ----------
Martin Reinecke's avatar
Martin Reinecke committed
76
            shape : {int, numpy.ndarray}
Marco Selig's avatar
Marco Selig committed
77
78
79
80
                Number of gridpoints or numbers of gridpoints along each axis.
            zerocenter : {bool, numpy.ndarray}, *optional*
                Whether the Fourier zero-mode is located in the center of the
                grid (or the center of each axis speparately) or not
Ultimanet's avatar
Ultimanet committed
81
                (default: False).
Martin Reinecke's avatar
Martin Reinecke committed
82
            distances : {float, numpy.ndarray}, *optional*
Marco Selig's avatar
Marco Selig committed
83
84
                Distance between two grid points along each axis
                (default: None).
Martin Reinecke's avatar
Martin Reinecke committed
85
            harmonic : bool, *optional*
Marco Selig's avatar
Marco Selig committed
86
87
88
89
90
91
92
                Whether the space represents a Fourier or a position grid
                (default: False).

            Returns
            -------
            None
        """
93
94
95
96
97
98
99
100
        self._harmonic = bool(harmonic)

        if dtype is None:
            if self.harmonic:
                dtype = np.dtype('complex')
            else:
                dtype = np.dtype('float')

101
        super(RGSpace, self).__init__(dtype)
102

103
104
105
        self._shape = self._parse_shape(shape)
        self._distances = self._parse_distances(distances)
        self._zerocenter = self._parse_zerocenter(zerocenter)
Marco Selig's avatar
Marco Selig committed
106

107
108
    def hermitian_decomposition(self, x, axes=None,
                                preserve_gaussian_variance=False):
109
110
111
112
113
114
115
116
117
        # compute the hermitian part
        flipped_x = self._hermitianize_inverter(x, axes=axes)
        flipped_x = flipped_x.conjugate()
        # average x and flipped_x.
        hermitian_part = x + flipped_x
        hermitian_part /= 2.

        # use subtraction since it is faster than flipping another time
        anti_hermitian_part = (x-hermitian_part)/1j
118
119
120
121
122
123
124

        if preserve_gaussian_variance:
            hermitian_part, anti_hermitian_part = \
                self._hermitianize_correct_variance(hermitian_part,
                                                    anti_hermitian_part,
                                                    axes=axes)

125
126
        return (hermitian_part, anti_hermitian_part)

127
128
129
130
131
132
    def _hermitianize_correct_variance(self, hermitian_part,
                                       anti_hermitian_part, axes):
        # Correct the variance by multiplying sqrt(2)
        hermitian_part = hermitian_part * np.sqrt(2)
        anti_hermitian_part = anti_hermitian_part * np.sqrt(2)

Martin Reinecke's avatar
Martin Reinecke committed
133
        # The fixed points of the point inversion must not be averaged.
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
        # Hence one must divide out the sqrt(2) again
        # -> Get the middle index of the array
        mid_index = np.array(hermitian_part.shape, dtype=np.int) // 2
        dimensions = mid_index.size
        # Use ndindex to iterate over all combinations of zeros and the
        # mid_index in order to correct all fixed points.
        if axes is None:
            axes = xrange(dimensions)

        ndlist = [2 if i in axes else 1 for i in xrange(dimensions)]
        ndlist = tuple(ndlist)
        for i in np.ndindex(ndlist):
            temp_index = tuple(i * mid_index)
            hermitian_part[temp_index] /= np.sqrt(2)
            anti_hermitian_part[temp_index] /= np.sqrt(2)
        return hermitian_part, anti_hermitian_part

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
    def _hermitianize_inverter(self, x, axes):
        # calculate the number of dimensions the input array has
        dimensions = len(x.shape)
        # prepare the slicing object which will be used for mirroring
        slice_primitive = [slice(None), ] * dimensions
        # copy the input data
        y = x.copy()

        if axes is None:
            axes = xrange(dimensions)

        # flip in the desired directions
        for i in axes:
            slice_picker = slice_primitive[:]
            slice_picker[i] = slice(1, None, None)
            slice_picker = tuple(slice_picker)

            slice_inverter = slice_primitive[:]
            slice_inverter[i] = slice(None, 0, -1)
            slice_inverter = tuple(slice_inverter)

            try:
                y.set_data(to_key=slice_picker, data=y,
                           from_key=slice_inverter)
            except(AttributeError):
                y[slice_picker] = y[slice_inverter]
        return y

179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
    # ---Mandatory properties and methods---

    @property
    def harmonic(self):
        return self._harmonic

    @property
    def shape(self):
        return self._shape

    @property
    def dim(self):
        return reduce(lambda x, y: x*y, self.shape)

    @property
    def total_volume(self):
        return self.dim * reduce(lambda x, y: x*y, self.distances)

    def copy(self):
        return self.__class__(shape=self.shape,
                              zerocenter=self.zerocenter,
                              distances=self.distances,
                              harmonic=self.harmonic,
                              dtype=self.dtype)

    def weight(self, x, power=1, axes=None, inplace=False):
        weight = reduce(lambda x, y: x*y, self.distances)**power
        if inplace:
            x *= weight
            result_x = x
        else:
            result_x = x*weight
        return result_x

213
    def get_distance_array(self, distribution_strategy):
theos's avatar
theos committed
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
        """
            Calculates an n-dimensional array with its entries being the
            lengths of the k-vectors from the zero point of the grid.

            Parameters
            ----------
            None : All information is taken from the parent object.

            Returns
            -------
            nkdict : distributed_data_object
        """
        shape = self.shape
        # prepare the distributed_data_object
        nkdict = distributed_data_object(
Martin Reinecke's avatar
Martin Reinecke committed
229
                        global_shape=shape, dtype=np.float64,
theos's avatar
theos committed
230
231
232
233
234
235
236
237
238
                        distribution_strategy=distribution_strategy)

        if distribution_strategy in DISTRIBUTION_STRATEGIES['slicing']:
            # get the node's individual slice of the first dimension
            slice_of_first_dimension = slice(
                                    *nkdict.distributor.local_slice[0:2])
        elif distribution_strategy in DISTRIBUTION_STRATEGIES['not']:
            slice_of_first_dimension = slice(0, shape[0])
        else:
239
240
            raise ValueError(
                "Unsupported distribution strategy")
theos's avatar
theos committed
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
        dists = self._distance_array_helper(slice_of_first_dimension)
        nkdict.set_local_data(dists)

        return nkdict

    def _distance_array_helper(self, slice_of_first_dimension):
        dk = self.distances
        shape = self.shape

        inds = []
        for a in shape:
            inds += [slice(0, a)]

        cords = np.ogrid[inds]

Theo Steininger's avatar
Theo Steininger committed
256
        dists = ((cords[0] - shape[0]//2)*dk[0])**2
theos's avatar
theos committed
257
        # apply zerocenterQ shift
258
259
        if not self.zerocenter[0]:
            dists = np.fft.ifftshift(dists)
theos's avatar
theos committed
260
261
262
263
        # only save the individual slice
        dists = dists[slice_of_first_dimension]
        for ii in range(1, len(shape)):
            temp = ((cords[ii] - shape[ii] // 2) * dk[ii])**2
264
            if not self.zerocenter[ii]:
Martin Reinecke's avatar
Martin Reinecke committed
265
                temp = np.fft.ifftshift(temp)
theos's avatar
theos committed
266
267
268
269
            dists = dists + temp
        dists = np.sqrt(dists)
        return dists

270
    def get_fft_smoothing_kernel_function(self, sigma):
theos's avatar
theos committed
271
272
273
274
275
        if sigma is None:
            sigma = np.sqrt(2) * np.max(self.distances)

        return lambda x: np.exp(-2. * np.pi**2 * x**2 * sigma**2)

276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
    # ---Added properties and methods---

    @property
    def distances(self):
        return self._distances

    @property
    def zerocenter(self):
        return self._zerocenter

    def _parse_shape(self, shape):
        if np.isscalar(shape):
            shape = (shape,)
        temp = np.empty(len(shape), dtype=np.int)
        temp[:] = shape
        return tuple(temp)

    def _parse_distances(self, distances):
        if distances is None:
            if self.harmonic:
                temp = np.ones_like(self.shape, dtype=np.float)
            else:
                temp = 1 / np.array(self.shape, dtype=np.float)
        else:
            temp = np.empty(len(self.shape), dtype=np.float)
            temp[:] = distances
        return tuple(temp)

    def _parse_zerocenter(self, zerocenter):
        temp = np.empty(len(self.shape), dtype=bool)
        temp[:] = zerocenter
        return tuple(temp)
308
309
310
311

    # ---Serialization---

    def _to_hdf5(self, hdf5_group):
Jait Dixit's avatar
Jait Dixit committed
312
313
314
        hdf5_group['shape'] = self.shape
        hdf5_group['zerocenter'] = self.zerocenter
        hdf5_group['distances'] = self.distances
315
        hdf5_group['harmonic'] = self.harmonic
Theo Steininger's avatar
Theo Steininger committed
316
        hdf5_group.attrs['dtype'] = self.dtype.name
Jait Dixit's avatar
Jait Dixit committed
317

318
319
320
        return None

    @classmethod
Theo Steininger's avatar
Theo Steininger committed
321
    def _from_hdf5(cls, hdf5_group, repository):
322
        result = cls(
Jait Dixit's avatar
Jait Dixit committed
323
324
325
            shape=hdf5_group['shape'][:],
            zerocenter=hdf5_group['zerocenter'][:],
            distances=hdf5_group['distances'][:],
326
            harmonic=hdf5_group['harmonic'][()],
Theo Steininger's avatar
Theo Steininger committed
327
            dtype=np.dtype(hdf5_group.attrs['dtype'])
Jait Dixit's avatar
Jait Dixit committed
328
            )
329
        return result
330
331
332
333
334

    def plot(self):
        n_dimensions = len(self._shape)
        # if n_dimensions == 1:
        #     fig = plt.figures.Figure(data=self.distances)