test_smoothing_operator.py 4.61 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
14
15
16
17
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
18
19
20

import unittest
import numpy as np
21
from numpy.testing import assert_equal, assert_allclose
22

23
24
25
26
from nifty import Field,\
    RGSpace,\
    PowerSpace,\
    SmoothingOperator
27

28
29
30
31
32
33
34
35
36
37
from itertools import product
from test.common import expand


def _get_rtol(tp):
    if (tp == np.float64) or (tp == np.complex128):
        return 1e-10
    else:
        return 1e-5

38
class SmoothingOperator_Tests(unittest.TestCase):
39
    spaces = [RGSpace(128)]
40

41
42
    @expand(product(spaces, [0., .5, 5.]))
    def test_property(self, space, sigma):
Martin Reinecke's avatar
Martin Reinecke committed
43
        op = SmoothingOperator.make(space, sigma=sigma)
44
45
46
47
48
49
50
51
        if op.domain[0] != space:
            raise TypeError
        if op.unitary != False:
            raise ValueError
        if op.self_adjoint != True:
            raise ValueError
        if op.sigma != sigma:
            raise ValueError
52
        if op.log_distances != False:
53
54
            raise ValueError

55
56
    @expand(product(spaces, [0., .5, 5.]))
    def test_adjoint_times(self, space, sigma):
Martin Reinecke's avatar
Martin Reinecke committed
57
        op = SmoothingOperator.make(space, sigma=sigma)
58
59
        rand1 = Field.from_random('normal', domain=space)
        rand2 = Field.from_random('normal', domain=space)
Martin Reinecke's avatar
Martin Reinecke committed
60
61
        tt1 = rand1.vdot(op.times(rand2))
        tt2 = rand2.vdot(op.adjoint_times(rand1))
62
        assert_allclose(tt1, tt2)
63

64
65
    @expand(product(spaces, [0., .5, 5.]))
    def test_times(self, space, sigma):
Martin Reinecke's avatar
Martin Reinecke committed
66
        op = SmoothingOperator.make(space, sigma=sigma)
67
68
69
        rand1 = Field(space, val=0.)
        rand1.val[0] = 1.
        tt1 = op.times(rand1)
70
        assert_allclose(1, tt1.sum())
71

72
    @expand(product([128, 256], [1, 0.4], [0., 1.,  3.7],
73
74
75
76
                    [np.float64, np.complex128]))
    def test_smooth_regular1(self, sz, d, sigma, tp):
        tol = _get_rtol(tp)
        sp = RGSpace(sz, harmonic=True, distances=d)
Martin Reinecke's avatar
Martin Reinecke committed
77
        smo = SmoothingOperator.make(sp, sigma=sigma)
78
79
80
81
82
83
84
85
86
87
88
        inp = Field.from_random(domain=sp, random_type='normal', std=1, mean=4,
                                dtype=tp)
        out = smo(inp)
        inp = inp.val.get_full_data()
        assert_allclose(inp.sum(), out.sum(), rtol=tol, atol=tol)

    @expand(product([10, 15], [7, 10], [1, 0.4], [2, 0.3], [0., 1.,  3.7],
                    [np.float64, np.complex128]))
    def test_smooth_regular2(self, sz1, sz2, d1, d2, sigma, tp):
        tol = _get_rtol(tp)
        sp = RGSpace([sz1, sz2], distances=[d1, d2], harmonic=True)
Martin Reinecke's avatar
Martin Reinecke committed
89
        smo = SmoothingOperator.make(sp, sigma=sigma)
90
91
92
93
94
95
96
97
98
99
100
101
        inp = Field.from_random(domain=sp, random_type='normal', std=1, mean=4,
                                dtype=tp)
        out = smo(inp)
        inp = inp.val.get_full_data()
        assert_allclose(inp.sum(), out.sum(), rtol=tol, atol=tol)

    @expand(product([100, 200], [False, True], [0., 1.,  3.7],
                    [np.float64, np.complex128]))
    def test_smooth_irregular1(self, sz, log, sigma, tp):
        tol = _get_rtol(tp)
        sp = RGSpace(sz, harmonic=True)
        ps = PowerSpace(sp, nbin=sz, logarithmic=log)
Martin Reinecke's avatar
Martin Reinecke committed
102
        smo = SmoothingOperator.make(ps, sigma=sigma)
103
104
105
106
107
108
109
110
111
112
113
114
        inp = Field.from_random(domain=ps, random_type='normal', std=1, mean=4,
                                dtype=tp)
        out = smo(inp)
        inp = inp.val.get_full_data()
        assert_allclose(inp.sum(), out.sum(), rtol=tol, atol=tol)

    @expand(product([10, 15], [7, 10], [False, True], [0., 1.,  3.7],
                    [np.float64, np.complex128]))
    def test_smooth_irregular2(self, sz1, sz2, log, sigma, tp):
        tol = _get_rtol(tp)
        sp = RGSpace([sz1, sz2], harmonic=True)
        ps = PowerSpace(sp, logarithmic=log)
Martin Reinecke's avatar
Martin Reinecke committed
115
        smo = SmoothingOperator.make(ps, sigma=sigma)
116
117
118
119
120
        inp = Field.from_random(domain=ps, random_type='normal', std=1, mean=4,
                                dtype=tp)
        out = smo(inp)
        inp = inp.val.get_full_data()
        assert_allclose(inp.sum(), out.sum(), rtol=tol, atol=tol)