operator.py 9.16 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2019 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
Martin Reinecke's avatar
Martin Reinecke committed
17

Martin Reinecke's avatar
Martin Reinecke committed
18
import numpy as np
Philipp Arras's avatar
Philipp Arras committed
19
from ..utilities import NiftyMetaBase, indent
Martin Reinecke's avatar
Martin Reinecke committed
20 21 22


class Operator(NiftyMetaBase()):
Philipp Arras's avatar
Philipp Arras committed
23
    """Transforms values defined on one domain into values defined on another
Martin Reinecke's avatar
Martin Reinecke committed
24 25 26
    domain, and can also provide the Jacobian.
    """

Martin Reinecke's avatar
Martin Reinecke committed
27
    @property
Martin Reinecke's avatar
Martin Reinecke committed
28
    def domain(self):
Philipp Arras's avatar
Docs  
Philipp Arras committed
29
        """The domain on which the Operator's input Field is defined.
Martin Reinecke's avatar
Martin Reinecke committed
30

Philipp Arras's avatar
Docs  
Philipp Arras committed
31 32 33 34
        Returns
        -------
        domain : DomainTuple or MultiDomain
        """
Martin Reinecke's avatar
Martin Reinecke committed
35
        return self._domain
Martin Reinecke's avatar
Martin Reinecke committed
36

Martin Reinecke's avatar
Martin Reinecke committed
37
    @property
Martin Reinecke's avatar
Martin Reinecke committed
38
    def target(self):
Philipp Arras's avatar
Docs  
Philipp Arras committed
39 40 41 42 43 44
        """The domain on which the Operator's output Field is defined.

        Returns
        -------
        target : DomainTuple or MultiDomain
        """
Martin Reinecke's avatar
Martin Reinecke committed
45

Martin Reinecke's avatar
Martin Reinecke committed
46
        return self._target
Martin Reinecke's avatar
Martin Reinecke committed
47

Martin Reinecke's avatar
Martin Reinecke committed
48 49 50 51 52 53
    @staticmethod
    def _check_domain_equality(dom_op, dom_field):
        if dom_op != dom_field:
            s = "The operator's and field's domains don't match."
            from ..domain_tuple import DomainTuple
            from ..multi_domain import MultiDomain
Sebastian Hutschenreuter's avatar
fix  
Sebastian Hutschenreuter committed
54
            if not isinstance(dom_op, (DomainTuple, MultiDomain,)):
Martin Reinecke's avatar
Martin Reinecke committed
55 56 57 58
                s += " Your operator's domain is neither a `DomainTuple`" \
                     " nor a `MultiDomain`."
            raise ValueError(s)

Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
59 60 61 62 63 64 65 66 67 68
    def scale(self, factor):
        if factor == 1:
            return self
        from .scaling_operator import ScalingOperator
        return ScalingOperator(factor, self.target)(self)

    def conjugate(self):
        from .simple_linear_operators import ConjugationOperator
        return ConjugationOperator(self.target)(self)

Martin Reinecke's avatar
Martin Reinecke committed
69 70 71 72 73
    @property
    def real(self):
        from .simple_linear_operators import Realizer
        return Realizer(self.target)(self)

Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
74 75 76
    def __neg__(self):
        return self.scale(-1)

Martin Reinecke's avatar
Martin Reinecke committed
77 78 79
    def __matmul__(self, x):
        if not isinstance(x, Operator):
            return NotImplemented
Martin Reinecke's avatar
Martin Reinecke committed
80
        return _OpChain.make((self, x))
Martin Reinecke's avatar
Martin Reinecke committed
81

Martin Reinecke's avatar
Martin Reinecke committed
82
    def __mul__(self, x):
83 84 85 86 87
        if isinstance(x, Operator):
            return _OpProd(self, x)
        if np.isscalar(x):
            return self.scale(x)
        return NotImplemented
Martin Reinecke's avatar
Martin Reinecke committed
88

89 90 91
    def __rmul__(self, x):
        return self.__mul__(x)

Philipp Arras's avatar
Philipp Arras committed
92 93 94
    def __add__(self, x):
        if not isinstance(x, Operator):
            return NotImplemented
Martin Reinecke's avatar
Martin Reinecke committed
95
        return _OpSum(self, x)
Philipp Arras's avatar
Philipp Arras committed
96

97 98 99 100 101
    def __sub__(self, x):
        if not isinstance(x, Operator):
            return NotImplemented
        return _OpSum(self, -x)

Martin Reinecke's avatar
Martin Reinecke committed
102 103 104 105 106
    def __pow__(self, power):
        if not np.isscalar(power):
            return NotImplemented
        return _OpChain.make((_PowerOp(self.target, power), self))

Martin Reinecke's avatar
Martin Reinecke committed
107 108 109
    def clip(self, min=None, max=None):
        if min is None and max is None:
            return self
Jakob Knollmueller's avatar
Jakob Knollmueller committed
110
        return _OpChain.make((_Clipper(self.target, min, max), self))
Martin Reinecke's avatar
Martin Reinecke committed
111

Martin Reinecke's avatar
Martin Reinecke committed
112
    def apply(self, x):
Philipp Arras's avatar
Docs  
Philipp Arras committed
113 114 115 116 117 118 119 120
        '''Applies the operator to a Field or MultiField.

        Parameters
        ----------
        x : Field or MultiField
            Input on which the operator shall act. Needs to be defined on
            :attr:`domain`.
        '''
Martin Reinecke's avatar
Martin Reinecke committed
121
        raise NotImplementedError
Martin Reinecke's avatar
Martin Reinecke committed
122

Philipp Arras's avatar
Philipp Arras committed
123
    def force(self, x):
Philipp Arras's avatar
Docs  
Philipp Arras committed
124 125
        """Extract subset of domain of x according to `self.domain` and apply
        operator."""
Philipp Arras's avatar
Philipp Arras committed
126 127
        return self.apply(x.extract(self.domain))

128 129 130
    def _check_input(self, x):
        from ..linearization import Linearization
        d = x.target if isinstance(x, Linearization) else x.domain
Martin Reinecke's avatar
Martin Reinecke committed
131
        self._check_domain_equality(self._domain, d)
132

Martin Reinecke's avatar
Martin Reinecke committed
133
    def __call__(self, x):
Martin Reinecke's avatar
Martin Reinecke committed
134 135 136
        if isinstance(x, Operator):
            return _OpChain.make((self, x))
        return self.apply(x)
Martin Reinecke's avatar
Martin Reinecke committed
137

Martin Reinecke's avatar
Martin Reinecke committed
138 139 140 141 142 143 144 145
    def ducktape(self, name):
        from .simple_linear_operators import ducktape
        return self(ducktape(self, None, name))

    def ducktape_left(self, name):
        from .simple_linear_operators import ducktape
        return ducktape(None, self, name)(self)

Martin Reinecke's avatar
Martin Reinecke committed
146 147 148
    def __repr__(self):
        return self.__class__.__name__

Martin Reinecke's avatar
Martin Reinecke committed
149

Martin Reinecke's avatar
Martin Reinecke committed
150
for f in ["sqrt", "exp", "log", "tanh", "sigmoid", 'sin', 'cos', 'tan',
151
          'sinh', 'cosh', 'absolute', 'sinc', 'one_over']:
Martin Reinecke's avatar
Martin Reinecke committed
152 153
    def func(f):
        def func2(self):
154
            fa = _FunctionApplier(self.target, f)
Martin Reinecke's avatar
Martin Reinecke committed
155 156 157 158 159 160 161 162
            return _OpChain.make((fa, self))
        return func2
    setattr(Operator, f, func(f))


class _FunctionApplier(Operator):
    def __init__(self, domain, funcname):
        from ..sugar import makeDomain
Martin Reinecke's avatar
Martin Reinecke committed
163
        self._domain = self._target = makeDomain(domain)
Martin Reinecke's avatar
Martin Reinecke committed
164 165
        self._funcname = funcname

Martin Reinecke's avatar
Martin Reinecke committed
166
    def apply(self, x):
167
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
168 169 170
        return getattr(x, self._funcname)()


Martin Reinecke's avatar
Martin Reinecke committed
171 172 173 174 175 176 177 178 179 180 181 182
class _Clipper(Operator):
    def __init__(self, domain, min=None, max=None):
        from ..sugar import makeDomain
        self._domain = self._target = makeDomain(domain)
        self._min = min
        self._max = max

    def apply(self, x):
        self._check_input(x)
        return x.clip(self._min, self._max)


Martin Reinecke's avatar
Martin Reinecke committed
183 184 185 186 187 188 189 190 191 192 193
class _PowerOp(Operator):
    def __init__(self, domain, power):
        from ..sugar import makeDomain
        self._domain = self._target = makeDomain(domain)
        self._power = power

    def apply(self, x):
        self._check_input(x)
        return x**self._power


Martin Reinecke's avatar
Martin Reinecke committed
194 195 196 197 198 199 200 201 202 203
class _CombinedOperator(Operator):
    def __init__(self, ops, _callingfrommake=False):
        if not _callingfrommake:
            raise NotImplementedError
        self._ops = tuple(ops)

    @classmethod
    def unpack(cls, ops, res):
        for op in ops:
            if isinstance(op, cls):
Martin Reinecke's avatar
Martin Reinecke committed
204
                res = cls.unpack(op._ops, res)
Martin Reinecke's avatar
Martin Reinecke committed
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
            else:
                res = res + [op]
        return res

    @classmethod
    def make(cls, ops):
        res = cls.unpack(ops, [])
        if len(res) == 1:
            return res[0]
        return cls(res, _callingfrommake=True)


class _OpChain(_CombinedOperator):
    def __init__(self, ops, _callingfrommake=False):
        super(_OpChain, self).__init__(ops, _callingfrommake)
Martin Reinecke's avatar
Martin Reinecke committed
220 221
        self._domain = self._ops[-1].domain
        self._target = self._ops[0].target
Martin Reinecke's avatar
Martin Reinecke committed
222 223 224
        for i in range(1, len(self._ops)):
            if self._ops[i-1].domain != self._ops[i].target:
                raise ValueError("domain mismatch")
Martin Reinecke's avatar
Martin Reinecke committed
225

Martin Reinecke's avatar
Martin Reinecke committed
226
    def apply(self, x):
227
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
228 229 230 231
        for op in reversed(self._ops):
            x = op(x)
        return x

Philipp Arras's avatar
Philipp Arras committed
232 233 234 235 236
    def __repr__(self):
        subs = "\n".join(sub.__repr__() for sub in self._ops)
        return "_OpChain:\n" + indent(subs)


Martin Reinecke's avatar
Martin Reinecke committed
237 238 239 240 241 242 243 244 245
class _OpProd(Operator):
    def __init__(self, op1, op2):
        from ..sugar import domain_union
        self._domain = domain_union((op1.domain, op2.domain))
        self._target = op1.target
        if op1.target != op2.target:
            raise ValueError("target mismatch")
        self._op1 = op1
        self._op2 = op2
Martin Reinecke's avatar
Martin Reinecke committed
246

Martin Reinecke's avatar
Martin Reinecke committed
247
    def apply(self, x):
Martin Reinecke's avatar
Martin Reinecke committed
248 249
        from ..linearization import Linearization
        from ..sugar import makeOp
250
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
251
        lin = isinstance(x, Linearization)
252 253 254
        v = x._val if lin else x
        v1 = v.extract(self._op1.domain)
        v2 = v.extract(self._op2.domain)
Martin Reinecke's avatar
Martin Reinecke committed
255
        if not lin:
256
            return self._op1(v1) * self._op2(v2)
257 258 259
        wm = x.want_metric
        lin1 = self._op1(Linearization.make_var(v1, wm))
        lin2 = self._op2(Linearization.make_var(v2, wm))
Martin Reinecke's avatar
Martin Reinecke committed
260 261
        op = (makeOp(lin1._val)(lin2._jac))._myadd(
            makeOp(lin2._val)(lin1._jac), False)
262
        return lin1.new(lin1._val*lin2._val, op(x.jac))
Martin Reinecke's avatar
Martin Reinecke committed
263

Philipp Arras's avatar
Philipp Arras committed
264 265 266 267 268
    def __repr__(self):
        subs = "\n".join(sub.__repr__() for sub in (self._op1, self._op2))
        return "_OpProd:\n"+indent(subs)


Martin Reinecke's avatar
Martin Reinecke committed
269 270
class _OpSum(Operator):
    def __init__(self, op1, op2):
Philipp Arras's avatar
Philipp Arras committed
271
        from ..sugar import domain_union
Martin Reinecke's avatar
Martin Reinecke committed
272 273 274 275
        self._domain = domain_union((op1.domain, op2.domain))
        self._target = domain_union((op1.target, op2.target))
        self._op1 = op1
        self._op2 = op2
Philipp Arras's avatar
Philipp Arras committed
276 277

    def apply(self, x):
Martin Reinecke's avatar
Martin Reinecke committed
278
        from ..linearization import Linearization
279
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
280 281 282 283
        lin = isinstance(x, Linearization)
        v = x._val if lin else x
        v1 = v.extract(self._op1.domain)
        v2 = v.extract(self._op2.domain)
Philipp Arras's avatar
Philipp Arras committed
284
        res = None
Martin Reinecke's avatar
Martin Reinecke committed
285 286
        if not lin:
            return self._op1(v1).unite(self._op2(v2))
287 288 289
        wm = x.want_metric
        lin1 = self._op1(Linearization.make_var(v1, wm))
        lin2 = self._op2(Linearization.make_var(v2, wm))
Martin Reinecke's avatar
Martin Reinecke committed
290
        op = lin1._jac._myadd(lin2._jac, False)
Martin Reinecke's avatar
bug fix  
Martin Reinecke committed
291
        res = lin1.new(lin1._val.unite(lin2._val), op(x.jac))
Martin Reinecke's avatar
Martin Reinecke committed
292 293
        if lin1._metric is not None and lin2._metric is not None:
            res = res.add_metric(lin1._metric + lin2._metric)
Philipp Arras's avatar
Philipp Arras committed
294
        return res
Philipp Arras's avatar
Philipp Arras committed
295 296 297 298

    def __repr__(self):
        subs = "\n".join(sub.__repr__() for sub in (self._op1, self._op2))
        return "_OpSum:\n"+indent(subs)