find_amplitude_parameters.py 4.05 KB
Newer Older
Philipp Arras's avatar
Philipp Arras committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2019 Max-Planck-Society
# Author: Philipp Arras
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.

import numpy as np

Martin Reinecke's avatar
5->6    
Martin Reinecke committed
21
import nifty6 as ift
Philipp Arras's avatar
Philipp Arras committed
22
23
24
25
26
27
28
29
30
import matplotlib.pyplot as plt


def _default_pspace(dom):
    return ift.PowerSpace(dom.get_default_codomain())


if __name__ == '__main__':
    np.random.seed(42)
31
    fa = ift.CorrelatedFieldMaker.make(10, 0.1, '')
Philipp Arras's avatar
Philipp Arras committed
32
33
    n_samps = 20
    slope_means = [-2, -3]
34
    fa.add_fluctuations(ift.RGSpace(128, 0.1), 10, 2, 1, 1e-6,
Philipp Arras's avatar
Philipp Arras committed
35
36
37
                        2, 1e-6, slope_means[0], 0.2, 'spatial')
    # fa.add_fluctuations(_default_pspace(ift.RGSpace((128, 64))), 10, 2, 1,
    #                     1e-6, 2, 1e-6, slope_means[0], 0.2, 'spatial')
38
    fa.add_fluctuations(ift.RGSpace(32), 3, 5, 1, 1e-6, 2,
Philipp Arras's avatar
Philipp Arras committed
39
                        1e-6, slope_means[1], 1, 'freq')
40
    correlated_field = fa.finalize()
41
    amplitudes = fa.normalized_amplitudes
Philipp Arras's avatar
Philipp Arras committed
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
    plt.style.use('seaborn-notebook')

    tgt = correlated_field.target
    if len(tgt.shape) == 1:
        fig, axes = plt.subplots(nrows=1, ncols=2)
        fig.set_size_inches(20, 10)
    else:
        fig, axes = plt.subplots(nrows=3, ncols=3)
        fig.set_size_inches(20, 16)
    axs = (ax for ax in axes.ravel())
    for ii, aa in enumerate(amplitudes):
        ax = next(axs)
        pspec = aa**2
        ax.set_xscale('log')
        ax.set_yscale('log')
        for _ in range(n_samps):
            fld = pspec(ift.from_random('normal', pspec.domain))
            klengths = fld.domain[0].k_lengths
            ycoord = fld.to_global_data_rw()
            ycoord[0] = ycoord[1]
            ax.plot(klengths, ycoord, alpha=1)

        ymin, ymax = ax.get_ylim()
        color = plt.rcParams['axes.prop_cycle'].by_key()['color'][0]
        lbl = 'Mean slope (k^{})'.format(2*slope_means[ii])
        for fac in np.linspace(np.log(ymin), np.log(ymax**2/ymin)):
            xs = np.linspace(np.amin(klengths[1:]), np.amax(klengths[1:]))
            ys = xs**(2*slope_means[ii])*np.exp(fac)
            xs = np.insert(xs, 0, 0)
            ys = np.insert(ys, 0, ys[0])
            ax.plot(xs, ys, zorder=1, color=color, linewidth=0.3, label=lbl)
            lbl = None

        ax.set_ylim([ymin, ymax])
        ax.set_xlim([None, np.amax(klengths)])
        ax.legend()

    if len(tgt.shape) == 2:
        foo = []
        for ax in axs:
            pos = ift.from_random('normal', correlated_field.domain)
            fld = correlated_field(pos).to_global_data()
            foo.append((ax, fld))
        mi, ma = np.inf, -np.inf
        for _, fld in foo:
            mi = min([mi, np.amin(fld)])
            ma = max([ma, np.amax(fld)])
        nxdx, nydy = tgt.shape
        if len(tgt) == 2:
            nxdx *= tgt[0].distances[0]
            nydy *= tgt[1].distances[0]
        else:
            nxdx *= tgt[0].distances[0]
            nydy *= tgt[0].distances[1]
        for ax, fld in foo:
            im = ax.imshow(fld.T,
                           extent=[0, nxdx, 0, nydy],
                           aspect='auto',
                           origin='lower',
                           vmin=mi,
                           vmax=ma)
        fig.colorbar(im, ax=axes.ravel().tolist())
    elif len(tgt.shape) == 1:
        ax = next(axs)
        flds = []
        for _ in range(n_samps):
            pos = ift.from_random('normal', correlated_field.domain)
            ax.plot(correlated_field(pos).to_global_data())

    plt.savefig('correlated_fields.png')
    plt.close()