test_power.py 6.11 KB
Newer Older
Philipp Arras's avatar
Philipp Arras committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.

import unittest
import nifty4 as ift
import numpy as np
from itertools import product
from test.common import expand
from numpy.testing import assert_allclose


# TODO Add also other space types


class Power_Energy_Tests(unittest.TestCase):
    @expand(product([ift.RGSpace(64, distances=.789),
32
33
34
35
                     ift.RGSpace([32, 32], distances=.789)],
                    [132, 42, 3]))
    def testLinearPower(self, space, seed):
        np.random.seed(seed)
Philipp Arras's avatar
Philipp Arras committed
36
37
38
39
40
41
42
43
        dim = len(space.shape)
        hspace = space.get_default_codomain()
        ht = ift.HarmonicTransformOperator(hspace, space)
        binbounds = ift.PowerSpace.useful_binbounds(hspace, logarithmic=True)
        pspace = ift.PowerSpace(hspace, binbounds=binbounds)
        P = ift.PowerProjectionOperator(domain=hspace, power_space=pspace)
        xi = ift.Field.from_random(domain=hspace, random_type='normal')

44
45
46
47
48
49
50
        # TODO Power spectrum abhängig von Anzahl der Pixel
        def pspec(k): return 64 / (1 + k**2)**dim
        pspec = ift.PS_field(pspace, pspec)
        tau0 = ift.log(pspec)
        A = P.adjoint_times(ift.sqrt(pspec))
        n = ift.Field.from_random(domain=space, random_type='normal', std=.01)
        N = ift.DiagonalOperator(n**2)
Philipp Arras's avatar
Philipp Arras committed
51
        s = xi * A
52
        diag = ift.Field.ones(space)
Philipp Arras's avatar
Philipp Arras committed
53
54
55
        Instrument = ift.DiagonalOperator(diag)
        R = Instrument * ht
        d = R(s) + n
56
57
58
59
        ift.plot(d, name='d.png')
        ift.plot(ht(s), name='s.png')
        ift.plot(n, name='n.png')
        ift.plot(pspec, name='pspec.png')
Philipp Arras's avatar
Philipp Arras committed
60
61
62

        direction = ift.Field.from_random('normal', pspace)
        direction /= np.sqrt(direction.var())
63
        eps = 1e-7
Philipp Arras's avatar
Philipp Arras committed
64
65
66
67
68
69
70
71
72
73
74
75
76
77
        tau1 = tau0 + eps * direction

        IC = ift.GradientNormController(
            name='IC',
            verbose=False,
            iteration_limit=100,
            tol_abs_gradnorm=1e-5)
        inverter = ift.ConjugateGradient(IC)

        S = ift.create_power_operator(hspace, power_spectrum=lambda k: 1.)

        D = ift.library.WienerFilterEnergy(position=s, d=d, R=R, N=N, S=S,
                                           inverter=inverter).curvature

78
79
80
81
82
83
84
        w = ift.Field.zeros_like(tau0)
        Nsamples = 10
        for i in range(Nsamples):
            sample = D.generate_posterior_sample() + s
            w += P(abs(sample)**2)
        w /= Nsamples

Philipp Arras's avatar
Philipp Arras committed
85
        energy0 = ift.library.CriticalPowerEnergy(
86
            position=tau0, m=s, inverter=inverter, w=w)
Philipp Arras's avatar
Philipp Arras committed
87
        energy1 = ift.library.CriticalPowerEnergy(
88
            position=tau1, m=s, inverter=inverter, w=w)
Philipp Arras's avatar
Philipp Arras committed
89
90
91

        a = (energy1.value - energy0.value) / eps
        b = energy0.gradient.vdot(direction)
92
        tol = 1e-4
Philipp Arras's avatar
Philipp Arras committed
93
94
95
96
        assert_allclose(a, b, rtol=tol, atol=tol)

    @expand(product([ift.RGSpace(64, distances=.789),
                     ift.RGSpace([32, 32], distances=.789)],
97
98
99
100
                    [ift.library.Exponential, ift.library.Linear],
                    [132, 42, 3]))
    def testNonlinearPower(self, space, nonlinearity, seed):
        np.random.seed(seed)
Philipp Arras's avatar
Philipp Arras committed
101
102
        f = nonlinearity()
        dim = len(space.shape)
103
104
        hspace = space.get_default_codomain()
        ht = ift.HarmonicTransformOperator(hspace, space)
Philipp Arras's avatar
Philipp Arras committed
105
106
107
108
109
110
111
112
113
        binbounds = ift.PowerSpace.useful_binbounds(hspace, logarithmic=True)
        pspace = ift.PowerSpace(hspace, binbounds=binbounds)
        P = ift.PowerProjectionOperator(domain=hspace, power_space=pspace)
        xi = ift.Field.from_random(domain=hspace, random_type='normal')

        def pspec(k): return 1 / (1 + k**2)**dim
        tau0 = ift.PS_field(pspace, pspec)
        A = P.adjoint_times(ift.sqrt(tau0))
        n = ift.Field.from_random(domain=space, random_type='normal')
114
        s = ht(xi * A)
Philipp Arras's avatar
Philipp Arras committed
115
116
117
118
119
120
121
122
        diag = ift.Field.ones(space) * 10
        R = ift.DiagonalOperator(diag)
        diag = ift.Field.ones(space)
        N = ift.DiagonalOperator(diag)
        d = R(f(s)) + n

        direction = ift.Field.from_random('normal', pspace)
        direction /= np.sqrt(direction.var())
123
        eps = 1e-7
Philipp Arras's avatar
Philipp Arras committed
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
        tau1 = tau0 + eps * direction

        IC = ift.GradientNormController(
            name='IC',
            verbose=False,
            iteration_limit=100,
            tol_abs_gradnorm=1e-5)
        inverter = ift.ConjugateGradient(IC)

        S = ift.create_power_operator(hspace, power_spectrum=lambda k: 1.)
        D = ift.library.NonlinearWienerFilterEnergy(
            position=xi,
            d=d,
            Instrument=R,
            nonlinearity=f,
            power=A,
            N=N,
            S=S,
142
            ht=ht,
Philipp Arras's avatar
Philipp Arras committed
143
            inverter=inverter).curvature
144
145
        Nsamples = 10
        sample_list = [D.generate_posterior_sample() + xi for _ in range(Nsamples)]
Philipp Arras's avatar
Philipp Arras committed
146
147
148
149
150
151
152
153
154

        energy0 = ift.library.NonlinearPowerEnergy(
            position=tau0,
            d=d,
            m=xi,
            D=D,
            Instrument=R,
            Projection=P,
            nonlinearity=f,
155
            ht=ht,
Philipp Arras's avatar
Philipp Arras committed
156
            N=N,
157
            sample_list=sample_list)
Philipp Arras's avatar
Philipp Arras committed
158
159
160
161
162
163
164
165
        energy1 = ift.library.NonlinearPowerEnergy(
            position=tau1,
            d=d,
            m=xi,
            D=D,
            Instrument=R,
            Projection=P,
            nonlinearity=f,
166
            ht=ht,
Philipp Arras's avatar
Philipp Arras committed
167
            N=N,
168
            sample_list=sample_list)
Philipp Arras's avatar
Philipp Arras committed
169
170
171

        a = (energy1.value - energy0.value) / eps
        b = energy0.gradient.vdot(direction)
172
        tol = 1e-4
Philipp Arras's avatar
Philipp Arras committed
173
        assert_allclose(a, b, rtol=tol, atol=tol)