sugar.py 19.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
#
14
# Copyright(C) 2013-2020 Max-Planck-Society
Theo Steininger's avatar
Theo Steininger committed
15
#
16
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
17

18
import sys
19
from time import time
20

21
import numpy as np
22

23
from . import pointwise, utilities
24
from .domain_tuple import DomainTuple
Martin Reinecke's avatar
Martin Reinecke committed
25
from .domains.power_space import PowerSpace
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
26
from .field import Field
27
from .logger import logger
Martin Reinecke's avatar
Martin Reinecke committed
28
29
from .multi_domain import MultiDomain
from .multi_field import MultiField
Philipp Arras's avatar
Philipp Arras committed
30
from .operators.block_diagonal_operator import BlockDiagonalOperator
Martin Reinecke's avatar
Martin Reinecke committed
31
from .operators.diagonal_operator import DiagonalOperator
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
32
from .operators.distributors import PowerDistributor
33
from .operators.operator import Operator
34
from .operators.sampling_enabler import SamplingDtypeSetter
35
from .operators.scaling_operator import ScalingOperator
Lukas Platz's avatar
Lukas Platz committed
36
from .plot import Plot
37

Martin Reinecke's avatar
step 1    
Martin Reinecke committed
38
39
__all__ = ['PS_field', 'power_analyze', 'create_power_operator',
           'create_harmonic_smoothing_operator', 'from_random',
Martin Reinecke's avatar
Martin Reinecke committed
40
           'full', 'makeField',
41
           'is_fieldlike', 'is_linearization', 'is_operator',
Martin Reinecke's avatar
Martin Reinecke committed
42
           'makeDomain', 'get_signal_variance', 'makeOp', 'domain_union',
Philipp Arras's avatar
Philipp Arras committed
43
           'get_default_codomain', 'single_plot', 'exec_time',
44
           'calculate_position'] + list(pointwise.ptw_dict.keys())
45

46

47
def PS_field(pspace, func):
Martin Reinecke's avatar
Martin Reinecke committed
48
49
50
51
52
53
54
55
    """Convenience function sampling a power spectrum

    Parameters
    ----------
    pspace : PowerSpace
        space at whose `k_lengths` the power spectrum function is evaluated
    func : function taking and returning a numpy.ndarray(float)
        the power spectrum function
Martin Reinecke's avatar
Martin Reinecke committed
56

Martin Reinecke's avatar
Martin Reinecke committed
57
58
    Returns
    -------
Martin Reinecke's avatar
Martin Reinecke committed
59
60
    Field
        A field defined on (pspace,) containing the computed function values
Martin Reinecke's avatar
Martin Reinecke committed
61
    """
Martin Reinecke's avatar
Martin Reinecke committed
62
63
    if not isinstance(pspace, PowerSpace):
        raise TypeError
Martin Reinecke's avatar
stage 1    
Martin Reinecke committed
64
    data = func(pspace.k_lengths)
65
    return Field(DomainTuple.make(pspace), data)
Martin Reinecke's avatar
Martin Reinecke committed
66

Martin Reinecke's avatar
Martin Reinecke committed
67

68
69
70
71
def get_signal_variance(spec, space):
    """
    Computes how much a field with a given power spectrum will vary in space

72
    This is a small helper function that computes the expected variance
73
74
75
76
77
78
79
80
    of a harmonically transformed sample of this power spectrum.

    Parameters
    ---------
    spec: method
        a method that takes one k-value and returns the power spectrum at that
        location
    space: PowerSpace or any harmonic Domain
Martin Reinecke's avatar
Martin Reinecke committed
81
82
83
84
        If this function is given a harmonic domain, it creates the naturally
        binned PowerSpace to that domain.
        The field, for which the signal variance is then computed, is assumed
        to have this PowerSpace as naturally binned PowerSpace
85
86
87
88
    """
    if space.harmonic:
        space = PowerSpace(space)
    if not isinstance(space, PowerSpace):
Martin Reinecke's avatar
Martin Reinecke committed
89
90
        raise ValueError(
            "space must be either a harmonic space or Power space.")
91
92
93
    field = PS_field(space, spec)
    dist = PowerDistributor(space.harmonic_partner, space)
    k_field = dist(field)
Martin Reinecke's avatar
Martin Reinecke committed
94
    return k_field.weight(2).s_sum()
95

96

97
98
def _single_power_analyze(field, idx, binbounds):
    power_domain = PowerSpace(field.domain[idx], binbounds)
Martin Reinecke's avatar
Martin Reinecke committed
99
100
    pd = PowerDistributor(field.domain, power_domain, idx)
    return pd.adjoint_times(field.weight(1)).weight(-1)  # divides by bin size
101
102


Martin Reinecke's avatar
Martin Reinecke committed
103
104
# MR FIXME: this function is not well suited for analyzing more than one
# subdomain at once, because it allows only one set of binbounds.
105
106
def power_analyze(field, spaces=None, binbounds=None,
                  keep_phase_information=False):
107
    """Computes the power spectrum for a subspace of `field`.
108

Philipp Arras's avatar
Philipp Arras committed
109
110
111
112
113
114
    Creates a PowerSpace for the space addressed by `spaces` with the
    given binning and computes the power spectrum as a
    :class:`~nifty7.field.Field` over this PowerSpace. This can only
    be done if the subspace to be analyzed is a harmonic space. The
    resulting field has the same units as the square of the initial
    field.
115
116
117

    Parameters
    ----------
Philipp Arras's avatar
Fixups    
Philipp Arras committed
118
    field : Field
119
        The field to be analyzed
Martin Reinecke's avatar
Martin Reinecke committed
120
121
122
    spaces : None or int or tuple of int, optional
        The indices of subdomains for which the power spectrum shall be
        computed.
Martin Reinecke's avatar
Martin Reinecke committed
123
        If None, all subdomains will be converted.
124
        (default : None).
Martin Reinecke's avatar
Martin Reinecke committed
125
    binbounds : None or array-like, optional
126
        Inner bounds of the bins (default : None).
Martin Reinecke's avatar
Martin Reinecke committed
127
128
        if binbounds is None : bins are inferred.
    keep_phase_information : bool, optional
129
        If False, return a real-valued result containing the power spectrum
130
        of `field`.
131
        If True, return a complex-valued result whose real component
132
133
134
        contains the power spectrum computed from the real part of `field`,
        and whose imaginary component contains the power
        spectrum computed from the imaginary part of `field`.
135
136
137
138
139
140
        The absolute value of this result should be identical to the output
        of power_analyze with keep_phase_information=False.
        (default : False).

    Returns
    -------
Philipp Arras's avatar
Fixups    
Philipp Arras committed
141
    Field
142
        The output object. Its domain is a PowerSpace and it contains
Martin Reinecke's avatar
Martin Reinecke committed
143
        the power spectrum of `field`.
144
145
146
147
    """

    for sp in field.domain:
        if not sp.harmonic and not isinstance(sp, PowerSpace):
Martin Reinecke's avatar
Martin Reinecke committed
148
149
            logger.warning("WARNING: Field has a space in `domain` which is "
                           "neither harmonic nor a PowerSpace.")
150

151
    spaces = utilities.parse_spaces(spaces, len(field.domain))
152
153
154
155

    if len(spaces) == 0:
        raise ValueError("No space for analysis specified.")

Martin Reinecke's avatar
Martin Reinecke committed
156
    field_real = not utilities.iscomplextype(field.dtype)
157
158
159
    if (not field_real) and keep_phase_information:
        raise ValueError("cannot keep phase from real-valued input Field")

160
161
162
    if keep_phase_information:
        parts = [field.real*field.real, field.imag*field.imag]
    else:
163
164
165
166
        if field_real:
            parts = [field**2]
        else:
            parts = [field.real*field.real + field.imag*field.imag]
167
168

    for space_index in spaces:
Martin Reinecke's avatar
Martin Reinecke committed
169
        parts = [_single_power_analyze(part, space_index, binbounds)
170
171
172
173
174
                 for part in parts]

    return parts[0] + 1j*parts[1] if keep_phase_information else parts[0]


Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
175
def _create_power_field(domain, power_spectrum):
Philipp Arras's avatar
Philipp Arras committed
176
    if not callable(power_spectrum):  # we have a Field defined on a PowerSpace
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
177
178
179
180
181
182
183
        if not isinstance(power_spectrum, Field):
            raise TypeError("Field object expected")
        if len(power_spectrum.domain) != 1:
            raise ValueError("exactly one domain required")
        if not isinstance(power_spectrum.domain[0], PowerSpace):
            raise TypeError("PowerSpace required")
        power_domain = power_spectrum.domain[0]
184
        fp = power_spectrum
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
185
186
    else:
        power_domain = PowerSpace(domain)
187
        fp = PS_field(power_domain, power_spectrum)
188

Martin Reinecke's avatar
Martin Reinecke committed
189
    return PowerDistributor(domain, power_domain)(fp)
190

191

192
def create_power_operator(domain, power_spectrum, space=None):
193
    """Creates a diagonal operator with the given power spectrum.
194

Philipp Arras's avatar
Philipp Arras committed
195
    Constructs a diagonal operator that is defined on the specified domain.
196

197
198
    Parameters
    ----------
Martin Reinecke's avatar
Martin Reinecke committed
199
    domain : Domain, tuple of Domain or DomainTuple
Philipp Arras's avatar
Philipp Arras committed
200
        Domain on which the power operator shall be defined.
Martin Reinecke's avatar
Martin Reinecke committed
201
202
    power_spectrum : callable or Field
        An object that contains the power spectrum as a function of k.
Martin Reinecke's avatar
Martin Reinecke committed
203
    space : int
Martin Reinecke's avatar
Martin Reinecke committed
204
        the domain index on which the power operator will work
Theo Steininger's avatar
Theo Steininger committed
205

206
207
    Returns
    -------
Martin Reinecke's avatar
Martin Reinecke committed
208
209
    DiagonalOperator
        An operator that implements the given power spectrum.
210
    """
Martin Reinecke's avatar
Martin Reinecke committed
211
    domain = DomainTuple.make(domain)
Martin Reinecke's avatar
Martin Reinecke committed
212
    space = utilities.infer_space(domain, space)
Martin Reinecke's avatar
Martin Reinecke committed
213
214
    field = _create_power_field(domain[space], power_spectrum)
    return DiagonalOperator(field, domain, space)
215

216

217
def create_harmonic_smoothing_operator(domain, space, sigma):
Martin Reinecke's avatar
Martin Reinecke committed
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
    """Creates an operator which smoothes a subspace of a harmonic domain.

    Parameters
    ----------
    domain: DomainTuple
        The total domain and target of the operator
    space : int
        the index of the subspace on which the operator acts.
        This must be a harmonic space
    sigma : float
        The sigma of the Gaussian smoothing kernel

    Returns
    -------
    DiagonalOperator
        The requested smoothing operator
    """
235
236
237
    kfunc = domain[space].get_fft_smoothing_kernel_function(sigma)
    return DiagonalOperator(kfunc(domain[space].get_k_length_array()), domain,
                            space)
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
238
239
240


def full(domain, val):
Martin Reinecke's avatar
Martin Reinecke committed
241
242
243
244
245
246
247
248
249
250
251
    """Convenience function creating Fields/MultiFields with uniform values.

    Parameters
    ----------
    domain : Domainoid
        the intended domain of the output field
    val : scalar value
        the uniform value to be placed into all entries of the result

    Returns
    -------
Martin Reinecke's avatar
Martin Reinecke committed
252
253
    Field or MultiField
        The newly created uniform field
Martin Reinecke's avatar
Martin Reinecke committed
254
    """
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
255
256
257
258
259
    if isinstance(domain, (dict, MultiDomain)):
        return MultiField.full(domain, val)
    return Field.full(domain, val)


260
def from_random(domain, random_type='normal', dtype=np.float64, **kwargs):
Martin Reinecke's avatar
Martin Reinecke committed
261
262
263
264
265
266
    """Convenience function creating Fields/MultiFields with random values.

    Parameters
    ----------
    domain : Domainoid
        the intended domain of the output field
267
268
    random_type : 'pm1', 'normal', or 'uniform'
            The random distribution to use.
Martin Reinecke's avatar
Martin Reinecke committed
269
270
    dtype : type
        data type of the output field (e.g. numpy.float64)
271
272
        If the datatype is complex, each real an imaginary part have
        variance 1.
Martin Reinecke's avatar
Martin Reinecke committed
273
274
275
276
277
    **kwargs : additional parameters for the random distribution
        ('mean' and 'std' for 'normal', 'low' and 'high' for 'uniform')

    Returns
    -------
Martin Reinecke's avatar
Martin Reinecke committed
278
279
    Field or MultiField
        The newly created random field
280
281
282

    Notes
    -----
Martin Reinecke's avatar
Martin Reinecke committed
283
284
285
286
    When called with a multi-domain, the individual fields will be drawn in
    alphabetical order of the multi-domain's domain keys. As a consequence,
    renaming these keys may cause the multi-field to be filled with different
    random numbers, even for the same initial RNG state.
Martin Reinecke's avatar
Martin Reinecke committed
287
    """
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
288
    if isinstance(domain, (dict, MultiDomain)):
289
290
        return MultiField.from_random(domain, random_type, dtype, **kwargs)
    return Field.from_random(domain, random_type, dtype, **kwargs)
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
291
292


Martin Reinecke's avatar
Martin Reinecke committed
293
def makeField(domain, arr):
Martin Reinecke's avatar
Martin Reinecke committed
294
295
296
297
298
299
300
301
302
303
304
305
    """Convenience function creating Fields/MultiFields from Numpy arrays or
    dicts of Numpy arrays.

    Parameters
    ----------
    domain : Domainoid
        the intended domain of the output field
    arr : Numpy array if `domain` corresponds to a `DomainTuple`,
          dictionary of Numpy arrays if `domain` corresponds to a `MultiDomain`

    Returns
    -------
Martin Reinecke's avatar
Martin Reinecke committed
306
307
    Field or MultiField
        The newly created random field
Martin Reinecke's avatar
Martin Reinecke committed
308
    """
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
309
    if isinstance(domain, (dict, MultiDomain)):
Martin Reinecke's avatar
Martin Reinecke committed
310
311
        return MultiField.from_raw(domain, arr)
    return Field.from_raw(domain, arr)
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
312
313
314


def makeDomain(domain):
Martin Reinecke's avatar
Martin Reinecke committed
315
316
317
318
    """Convenience function creating DomainTuples/MultiDomains Domainoids.

    Parameters
    ----------
Martin Reinecke's avatar
Martin Reinecke committed
319
    domain : Domainoid (can be DomainTuple, MultiDomain, dict, Domain or list of Domains)
Martin Reinecke's avatar
Martin Reinecke committed
320
321
322
323
        the description of the requested (multi-)domain

    Returns
    -------
Martin Reinecke's avatar
Martin Reinecke committed
324
325
    DomainTuple or MultiDomain
        The newly created domain object
Martin Reinecke's avatar
Martin Reinecke committed
326
    """
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
327
    if isinstance(domain, (MultiDomain, dict)):
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
328
329
        return MultiDomain.make(domain)
    return DomainTuple.make(domain)
330
331


332
def makeOp(input, dom=None):
Martin Reinecke's avatar
Martin Reinecke committed
333
334
335
336
337
338
    """Converts a Field or MultiField to a diagonal operator.

    Parameters
    ----------
    input : None, Field or MultiField
        - if None, None is returned.
339
340
        - if Field on scalar-domain, a ScalingOperator with the coefficient
            given by the Field is returned.
Martin Reinecke's avatar
Martin Reinecke committed
341
342
343
344
345
        - if Field, a DiagonalOperator with the coefficients given by this
            Field is returned.
        - if MultiField, a BlockDiagonalOperator with entries given by this
            MultiField is returned.

346
347
348
    dom : DomainTuple or MultiDomain
        if `input` is a scalar, this is used as the operator's domain

Martin Reinecke's avatar
Martin Reinecke committed
349
350
351
352
    Notes
    -----
    No volume factors are applied.
    """
Martin Reinecke's avatar
Martin Reinecke committed
353
354
    if input is None:
        return None
355
    if np.isscalar(input):
Rouven Lemmerz's avatar
Typo    
Rouven Lemmerz committed
356
        if not isinstance(dom, (DomainTuple, MultiDomain)):
357
            raise TypeError("need proper `dom` argument")
358
        return ScalingOperator(dom, input)
359
360
361
    if dom is not None:
        if not dom == input.domain:
            raise ValueError("domain mismatch")
362
    if input.domain is DomainTuple.scalar_domain():
363
        return ScalingOperator(input.domain, input.val[()])
Martin Reinecke's avatar
Martin Reinecke committed
364
365
366
    if isinstance(input, Field):
        return DiagonalOperator(input)
    if isinstance(input, MultiField):
Martin Reinecke's avatar
Martin Reinecke committed
367
        return BlockDiagonalOperator(
Martin Reinecke's avatar
fix    
Martin Reinecke committed
368
            input.domain, {key: makeOp(val) for key, val in input.items()})
Martin Reinecke's avatar
Martin Reinecke committed
369
370
    raise NotImplementedError

Martin Reinecke's avatar
more    
Martin Reinecke committed
371
372

def domain_union(domains):
Martin Reinecke's avatar
Martin Reinecke committed
373
374
375
376
377
378
379
380
    """Computes the union of multiple DomainTuples/MultiDomains.

    Parameters
    ----------
    domains : list of DomainTuple or MultiDomain
        - if DomainTuple, all entries must be equal
        - if MultiDomain, there must not be any conflicting components
    """
Martin Reinecke's avatar
more    
Martin Reinecke committed
381
    if isinstance(domains[0], DomainTuple):
Martin Reinecke's avatar
Martin Reinecke committed
382
        if any(dom != domains[0] for dom in domains[1:]):
Martin Reinecke's avatar
more    
Martin Reinecke committed
383
384
385
386
            raise ValueError("domain mismatch")
        return domains[0]
    return MultiDomain.union(domains)

Martin Reinecke's avatar
more    
Martin Reinecke committed
387

388
389
390
391
392
393
394
395
396
397
# Pointwise functions

_current_module = sys.modules[__name__]

for f in pointwise.ptw_dict.keys():
    def func(f):
        def func2(x, *args, **kwargs):
           return x.ptw(f, *args, **kwargs)
        return func2
    setattr(_current_module, f, func(f))
Martin Reinecke's avatar
Martin Reinecke committed
398
399


400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
def get_default_codomain(domainoid, space=None):
    """For `RGSpace`, returns the harmonic partner domain.
    For `DomainTuple`, returns a copy of the object in which the domain
    indexed by `space` is substituted by its harmonic partner domain.
    In this case, if `space` is None, it is set to 0 if the `DomainTuple`
    contains exactly one domain.

    Parameters
    ----------
    domain: `RGSpace` or `DomainTuple`
        Domain for which to constuct the default harmonic partner
    space: int
        Optional index of the subdomain to be replaced by its default
        codomain. `domain[space]` must be of class `RGSpace`.
    """
    from .domains.rg_space import RGSpace
416
417
418
    from .domains.hp_space import HPSpace
    from .domains.gl_space import GLSpace
    from .domains.lm_space import LMSpace
419
420
421
422
423
424
    if isinstance(domainoid, RGSpace):
        return domainoid.get_default_codomain()
    if not isinstance(domainoid, DomainTuple):
        raise TypeError(
            'Works only on RGSpaces and DomainTuples containing those')
    space = utilities.infer_space(domainoid, space)
425
426
    if not isinstance(domainoid[space], (RGSpace, HPSpace, GLSpace, LMSpace)):
        raise TypeError("can only codomain structrued spaces")
427
428
429
    ret = [dom for dom in domainoid]
    ret[space] = domainoid[space].get_default_codomain()
    return DomainTuple.make(ret)
Lukas Platz's avatar
Lukas Platz committed
430
431
432
433
434
435
436
437
438
439
440


def single_plot(field, **kwargs):
    """Creates a single plot using `Plot`.
    Keyword arguments are passed to both `Plot.add` and `Plot.output`.
    """
    p = Plot()
    p.add(field, **kwargs)
    if 'title' in kwargs:
        del(kwargs['title'])
    p.output(**kwargs)
441
442
443
444


def exec_time(obj, want_metric=True):
    """Times the execution time of an operator or an energy."""
Philipp Arras's avatar
Philipp Arras committed
445
446
447
    from .linearization import Linearization
    from .minimization.energy import Energy
    from .operators.energy_operators import EnergyOperator
448
449
450
    if isinstance(obj, Energy):
        t0 = time()
        obj.at(0.99*obj.position)
451
        logger.info('Energy.at(): {}'.format(time() - t0))
452
453
454

        t0 = time()
        obj.value
455
        logger.info('Energy.value: {}'.format(time() - t0))
456
457
        t0 = time()
        obj.gradient
458
        logger.info('Energy.gradient: {}'.format(time() - t0))
459
460
        t0 = time()
        obj.metric
461
        logger.info('Energy.metric: {}'.format(time() - t0))
462
463
464

        t0 = time()
        obj.apply_metric(obj.position)
465
        logger.info('Energy.apply_metric: {}'.format(time() - t0))
466
467
468

        t0 = time()
        obj.metric(obj.position)
469
        logger.info('Energy.metric(position): {}'.format(time() - t0))
470
471
    elif isinstance(obj, Operator):
        want_metric = bool(want_metric)
472
        pos = from_random(obj.domain, 'normal')
473
474
        t0 = time()
        obj(pos)
475
        logger.info('Operator call with field: {}'.format(time() - t0))
476
477
478
479

        lin = Linearization.make_var(pos, want_metric=want_metric)
        t0 = time()
        res = obj(lin)
480
        logger.info('Operator call with linearization: {}'.format(time() - t0))
481

482
        if obj.target is DomainTuple.scalar_domain():
483
484
            t0 = time()
            res.gradient
485
            logger.info('Gradient evaluation: {}'.format(time() - t0))
486
487
488
489

            if want_metric:
                t0 = time()
                res.metric(pos)
490
                logger.info('Metric apply: {}'.format(time() - t0))
491
492
    else:
        raise TypeError
Philipp Arras's avatar
Philipp Arras committed
493
494
495
496


def calculate_position(operator, output):
    """Finds approximate preimage of an operator for a given output."""
Philipp Arras's avatar
Philipp Arras committed
497
498
499
500
501
    from .minimization.descent_minimizers import NewtonCG
    from .minimization.iteration_controllers import GradientNormController
    from .minimization.metric_gaussian_kl import MetricGaussianKL
    from .operators.scaling_operator import ScalingOperator
    from .operators.energy_operators import GaussianEnergy, StandardHamiltonian
Philipp Arras's avatar
Philipp Arras committed
502
503
504
505
    if not isinstance(operator, Operator):
        raise TypeError
    if output.domain != operator.target:
        raise TypeError
506
    if isinstance(output, MultiField):
507
        cov = 1e-3*max([np.max(np.abs(vv)) for vv in output.val.values()])**2
Philipp Arras's avatar
Philipp Arras committed
508
509
510
511
512
        invcov = ScalingOperator(output.domain, cov).inverse
        dtype = list(set([ff.dtype for ff in output.values()]))
        if len(dtype) != 1:
            raise ValueError('Only MultiFields with one dtype supported.')
        dtype = dtype[0]
513
    else:
514
        cov = 1e-3*np.max(np.abs(output.val))**2
Philipp Arras's avatar
Philipp Arras committed
515
        dtype = output.dtype
516
    invcov = ScalingOperator(output.domain, cov).inverse
517
518
519
    invcov = SamplingDtypeSetter(invcov, output.dtype)
    invcov = SamplingDtypeSetter(invcov, output.dtype)
    d = output + invcov.draw_sample(from_inverse=True)
Philipp Arras's avatar
Philipp Arras committed
520
    lh = GaussianEnergy(d, invcov) @ operator
Philipp Arras's avatar
Philipp Arras committed
521
522
    H = StandardHamiltonian(
        lh, ic_samp=GradientNormController(iteration_limit=200))
523
    pos = 0.1*from_random(operator.domain)
Philipp Arras's avatar
Philipp Arras committed
524
    minimizer = NewtonCG(GradientNormController(iteration_limit=10, name='findpos'))
Philipp Arras's avatar
Philipp Arras committed
525
    for ii in range(3):
Philipp Arras's avatar
Philipp Arras committed
526
        logger.info(f'Start iteration {ii+1}/3')
527
        kl = MetricGaussianKL.make(pos, H, 3, True)
Philipp Arras's avatar
Philipp Arras committed
528
529
530
        kl, _ = minimizer(kl)
        pos = kl.position
    return pos
531
532
533
534
535
536
537
538
539
540
541


def is_operator(obj):
    """Checks if object is operator-like.

    Note
    ----
    A simple `isinstance(obj, ift.Operator)` does give the expected
    result because, e.g., :class:`~nifty7.field.Field` inherits from
    :class:`~nifty7.operators.operator.Operator`.
    """
Philipp Arras's avatar
Philipp Arras committed
542
    return isinstance(obj, Operator) and obj.val is None
543
544
545
546


def is_linearization(obj):
    """Checks if object is linearization-like."""
Philipp Arras's avatar
Philipp Arras committed
547
    return isinstance(obj, Operator) and obj.jac is not None
548
549
550
551
552
553
554
555
556
557


def is_fieldlike(obj):
    """Checks if object is field-like.

    Note
    ----
    A simple `isinstance(obj, ift.Field)` does give the expected
    result because users might have implemented another class which
    behaves field-like but is not an instance of
Philipp Arras's avatar
Philipp Arras committed
558
559
    :class:`~nifty7.field.Field`. Also not that instances of
    :class:`~nifty7.linearization.Linearization` behave field-like.
560
    """
Philipp Arras's avatar
Philipp Arras committed
561
    return isinstance(obj, Operator) and obj.val is not None