correlated_fields.py 29.3 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1 2 3 4 5 6 7 8 9 10 11 12 13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
14
# Copyright(C) 2013-2020 Max-Planck-Society
Philipp Arras's avatar
Philipp Arras committed
15
# Authors: Philipp Frank, Philipp Arras, Philipp Haim
Martin Reinecke's avatar
Martin Reinecke committed
16
#
17
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
Philipp Arras's avatar
Philipp Arras committed
18

19 20 21
from functools import reduce
from operator import mul

Philipp Arras's avatar
Philipp Arras committed
22
import numpy as np
23

Philipp Arras's avatar
Philipp Arras committed
24
from .. import utilities
Philipp Arras's avatar
Philipp Arras committed
25
from ..domain_tuple import DomainTuple
Philipp Arras's avatar
Philipp Arras committed
26 27
from ..domains.power_space import PowerSpace
from ..domains.unstructured_domain import UnstructuredDomain
Philipp Arras's avatar
Philipp Arras committed
28
from ..field import Field
29
from ..logger import logger
Philipp Arras's avatar
Philipp Arras committed
30
from ..multi_field import MultiField
Philipp Arras's avatar
Philipp Arras committed
31
from ..operators.adder import Adder
32
from ..operators.contraction_operator import ContractionOperator
Philipp Arras's avatar
Philipp Arras committed
33
from ..operators.diagonal_operator import DiagonalOperator
Philipp Arras's avatar
Philipp Arras committed
34
from ..operators.distributors import PowerDistributor
Philipp Arras's avatar
Philipp Arras committed
35
from ..operators.endomorphic_operator import EndomorphicOperator
Martin Reinecke's avatar
Martin Reinecke committed
36
from ..operators.harmonic_operators import HarmonicTransformOperator
Philipp Arras's avatar
Philipp Arras committed
37
from ..operators.linear_operator import LinearOperator
Philipp Arras's avatar
Philipp Arras committed
38
from ..operators.operator import Operator
Philipp Arras's avatar
Philipp Arras committed
39
from ..operators.simple_linear_operators import ducktape
40
from ..operators.normal_operators import NormalTransform, LognormalTransform
41
from ..probing import StatCalculator
Philipp Arras's avatar
Philipp Arras committed
42
from ..sugar import full, makeDomain, makeField, makeOp
43

44

Philipp Arras's avatar
Philipp Arras committed
45
def _log_k_lengths(pspace):
Philipp Arras's avatar
Philipp Arras committed
46
    """Log(k_lengths) without zeromode"""
Philipp Arras's avatar
Philipp Arras committed
47 48 49
    return np.log(pspace.k_lengths[1:])


Philipp Arras's avatar
Philipp Arras committed
50
def _relative_log_k_lengths(power_space):
Philipp Arras's avatar
Philipp Arras committed
51 52
    """Log-distance to first bin
    logkl.shape==power_space.shape, logkl[0]=logkl[1]=0"""
Philipp Arras's avatar
Philipp Arras committed
53 54 55 56 57 58
    power_space = DomainTuple.make(power_space)
    assert isinstance(power_space[0], PowerSpace)
    assert len(power_space) == 1
    logkl = _log_k_lengths(power_space[0])
    assert logkl.shape[0] == power_space[0].shape[0] - 1
    logkl -= logkl[0]
Philipp Arras's avatar
Philipp Arras committed
59
    return np.insert(logkl, 0, 0)
Philipp Arras's avatar
Philipp Arras committed
60 61


Philipp Arras's avatar
Philipp Arras committed
62
def _log_vol(power_space):
63
    power_space = makeDomain(power_space)
Philipp Arras's avatar
Philipp Arras committed
64 65 66 67 68
    assert isinstance(power_space[0], PowerSpace)
    logk_lengths = _log_k_lengths(power_space[0])
    return logk_lengths[1:] - logk_lengths[:-1]


Philipp Haim's avatar
Philipp Haim committed
69 70 71 72 73 74
def _structured_spaces(domain):
    if isinstance(domain[0], UnstructuredDomain):
        return np.arange(1, len(domain))
    return np.arange(len(domain))


Philipp Haim's avatar
Philipp Haim committed
75
def _total_fluctuation_realized(samples):
Philipp Haim's avatar
Philipp Haim committed
76 77 78
    spaces = _structured_spaces(samples[0].domain)
    co = ContractionOperator(samples[0].domain, spaces)
    size = co.domain.size/co.target.size
79 80
    res = 0.
    for s in samples:
Philipp Haim's avatar
Philipp Haim committed
81 82
        res = res + (s - co.adjoint(co(s)/size))**2
    res = res.mean(spaces)/len(samples)
Philipp Haim's avatar
Philipp Haim committed
83
    return np.sqrt(res if np.isscalar(res) else res.val)
84 85


Philipp Frank's avatar
Philipp Frank committed
86
class _SlopeRemover(EndomorphicOperator):
Martin Reinecke's avatar
Martin Reinecke committed
87
    def __init__(self, domain, space=0):
Philipp Frank's avatar
Philipp Frank committed
88
        self._domain = makeDomain(domain)
89 90
        assert isinstance(self._domain[space], PowerSpace)
        logkl = _relative_log_k_lengths(self._domain[space])
91
        self._sc = logkl/float(logkl[-1])
Philipp Arras's avatar
Philipp Arras committed
92

93
        self._space = space
Philipp Haim's avatar
Philipp Haim committed
94 95 96
        axis = self._domain.axes[space][0]
        self._last = (slice(None),)*axis + (-1,) + (None,)
        self._extender = (None,)*(axis) + (slice(None),) + (None,)*(self._domain.axes[-1][-1]-axis)
Philipp Frank's avatar
Philipp Frank committed
97
        self._capability = self.TIMES | self.ADJOINT_TIMES
Philipp Arras's avatar
Philipp Arras committed
98

99 100
    def apply(self, x, mode):
        self._check_input(x, mode)
Martin Reinecke's avatar
stage 3  
Martin Reinecke committed
101
        x = x.val
Philipp Frank's avatar
Philipp Frank committed
102
        if mode == self.TIMES:
Philipp Haim's avatar
Philipp Haim committed
103
            res = x - x[self._last]*self._sc[self._extender]
Philipp Frank's avatar
Philipp Frank committed
104
        else:
105 106
            res = x.copy()
            res[self._last] -= (x*self._sc[self._extender]).sum(
Philipp Arras's avatar
Philipp Arras committed
107
                axis=self._space, keepdims=True)
Martin Reinecke's avatar
Martin Reinecke committed
108
        return makeField(self._tgt(mode), res)
Philipp Frank's avatar
Philipp Frank committed
109

Philipp Arras's avatar
Philipp Arras committed
110 111

class _TwoLogIntegrations(LinearOperator):
Martin Reinecke's avatar
Martin Reinecke committed
112
    def __init__(self, target, space=0):
Philipp Arras's avatar
Philipp Arras committed
113
        self._target = makeDomain(target)
114 115 116 117 118
        assert isinstance(self.target[space], PowerSpace)
        dom = list(self._target)
        dom[space] = UnstructuredDomain((2, self.target[space].shape[0]-2))
        self._domain = makeDomain(dom)
        self._space = space
119
        self._log_vol = _log_vol(self._target[space])
Philipp Arras's avatar
Philipp Arras committed
120 121 122 123
        self._capability = self.TIMES | self.ADJOINT_TIMES

    def apply(self, x, mode):
        self._check_input(x, mode)
124

Martin Reinecke's avatar
Martin Reinecke committed
125
        # Maybe make class properties
126 127
        axis = self._target.axes[self._space][0]
        sl = (slice(None),)*axis
Philipp Haim's avatar
Fixes  
Philipp Haim committed
128
        extender_sl = (None,)*axis + (slice(None),) + (None,)*(self._target.axes[-1][-1] - axis)
129 130
        first = sl + (0,)
        second = sl + (1,)
Martin Reinecke's avatar
Martin Reinecke committed
131 132 133
        from_third = sl + (slice(2, None),)
        no_border = sl + (slice(1, -1),)
        reverse = sl + (slice(None, None, -1),)
134

Philipp Arras's avatar
Philipp Arras committed
135
        if mode == self.TIMES:
Martin Reinecke's avatar
stage 3  
Martin Reinecke committed
136
            x = x.val
Philipp Arras's avatar
Philipp Arras committed
137
            res = np.empty(self._target.shape)
138
            res[first] = res[second] = 0
Martin Reinecke's avatar
Martin Reinecke committed
139
            res[from_third] = np.cumsum(x[second], axis=axis)
140
            res[from_third] = (res[from_third] + res[no_border])/2*self._log_vol[extender_sl] + x[first]
Martin Reinecke's avatar
Martin Reinecke committed
141
            res[from_third] = np.cumsum(res[from_third], axis=axis)
Philipp Arras's avatar
Philipp Arras committed
142
        else:
Martin Reinecke's avatar
Martin Reinecke committed
143
            x = x.val_rw()
Philipp Arras's avatar
Philipp Arras committed
144
            res = np.zeros(self._domain.shape)
Martin Reinecke's avatar
Martin Reinecke committed
145
            x[from_third] = np.cumsum(x[from_third][reverse], axis=axis)[reverse]
146
            res[first] += x[from_third]
147
            x[from_third] *= (self._log_vol/2.)[extender_sl]
148
            x[no_border] += x[from_third]
Martin Reinecke's avatar
Martin Reinecke committed
149
            res[second] += np.cumsum(x[from_third][reverse], axis=axis)[reverse]
Martin Reinecke's avatar
Martin Reinecke committed
150
        return makeField(self._tgt(mode), res)
Philipp Arras's avatar
Philipp Arras committed
151 152 153


class _Normalization(Operator):
Martin Reinecke's avatar
Martin Reinecke committed
154
    def __init__(self, domain, space=0):
Philipp Arras's avatar
Philipp Arras committed
155
        self._domain = self._target = DomainTuple.make(domain)
156
        assert isinstance(self._domain[space], PowerSpace)
157 158 159
        hspace = list(self._domain)
        hspace[space] = hspace[space].harmonic_partner
        hspace = makeDomain(hspace)
Philipp Arras's avatar
Philipp Arras committed
160 161 162
        pd = PowerDistributor(hspace,
                              power_space=self._domain[space],
                              space=space)
Martin Reinecke's avatar
Martin Reinecke committed
163
        mode_multiplicity = pd.adjoint(full(pd.target, 1.)).val_rw()
164
        zero_mode = (slice(None),)*self._domain.axes[space][0] + (0,)
Philipp Haim's avatar
Philipp Haim committed
165
        mode_multiplicity[zero_mode] = 0
Philipp Arras's avatar
Philipp Arras committed
166
        self._mode_multiplicity = makeOp(makeField(self._domain, mode_multiplicity))
167
        self._specsum = _SpecialSum(self._domain, space)
Philipp Arras's avatar
Philipp Arras committed
168 169 170

    def apply(self, x):
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
171
        amp = x.ptw("exp")
172
        spec = amp**2
Philipp Arras's avatar
Philipp Arras committed
173 174
        # FIXME This normalizes also the zeromode which is supposed to be left
        # untouched by this operator
Philipp Arras's avatar
Philipp Arras committed
175
        return self._specsum(self._mode_multiplicity(spec))**(-0.5)*amp
Philipp Arras's avatar
Philipp Arras committed
176 177 178


class _SpecialSum(EndomorphicOperator):
Martin Reinecke's avatar
Martin Reinecke committed
179
    def __init__(self, domain, space=0):
Philipp Arras's avatar
Philipp Arras committed
180 181
        self._domain = makeDomain(domain)
        self._capability = self.TIMES | self.ADJOINT_TIMES
182
        self._contractor = ContractionOperator(domain, space)
Philipp Arras's avatar
Philipp Arras committed
183 184 185

    def apply(self, x, mode):
        self._check_input(x, mode)
186
        return self._contractor.adjoint(self._contractor(x))
Philipp Arras's avatar
Philipp Arras committed
187 188


Philipp Haim's avatar
Philipp Haim committed
189
class _Distributor(LinearOperator):
Lukas Platz's avatar
Lukas Platz committed
190
    def __init__(self, dofdex, domain, target):
191 192 193
        self._dofdex = np.array(dofdex)
        self._target = DomainTuple.make(target)
        self._domain = DomainTuple.make(domain)
Philipp Haim's avatar
Philipp Haim committed
194 195 196 197
        self._capability = self.TIMES | self.ADJOINT_TIMES

    def apply(self, x, mode):
        self._check_input(x, mode)
Martin Reinecke's avatar
stage 3  
Martin Reinecke committed
198
        x = x.val
Philipp Haim's avatar
Philipp Haim committed
199 200 201
        if mode == self.TIMES:
            res = x[self._dofdex]
        else:
202
            res = np.zeros(self._tgt(mode).shape, dtype=x.dtype)
203
            res = utilities.special_add_at(res, 0, self._dofdex, x)
Martin Reinecke's avatar
Martin Reinecke committed
204
        return makeField(self._tgt(mode), res)
Martin Reinecke's avatar
Martin Reinecke committed
205

206

207 208
class _Amplitude(Operator):
    def __init__(self, target, fluctuations, flexibility, asperity,
209
                 loglogavgslope, azm, totvol, key, dofdex):
Philipp Arras's avatar
Philipp Arras committed
210 211
        """
        fluctuations > 0
212 213
        flexibility > 0 or None
        asperity > 0 or None
Philipp Arras's avatar
Philipp Arras committed
214 215 216
        loglogavgslope probably negative
        """
        assert isinstance(fluctuations, Operator)
217 218
        assert isinstance(flexibility, Operator) or flexibility is None
        assert isinstance(asperity, Operator) or asperity is None
Philipp Arras's avatar
Philipp Arras committed
219 220
        assert isinstance(loglogavgslope, Operator)

Philipp Haim's avatar
Philipp Haim committed
221 222
        if len(dofdex) > 0:
            N_copies = max(dofdex) + 1
Philipp Haim's avatar
Philipp Haim committed
223
            space = 1
Philipp Frank's avatar
cleanup  
Philipp Frank committed
224 225
            distributed_tgt = makeDomain((UnstructuredDomain(len(dofdex)),
                                          target))
Philipp Haim's avatar
Philipp Haim committed
226
            target = makeDomain((UnstructuredDomain(N_copies), target))
Lukas Platz's avatar
Lukas Platz committed
227
            Distributor = _Distributor(dofdex, target, distributed_tgt)
Philipp Haim's avatar
Philipp Haim committed
228
        else:
Philipp Haim's avatar
Philipp Haim committed
229
            N_copies = 0
Philipp Haim's avatar
Philipp Haim committed
230
            space = 0
Philipp Haim's avatar
Philipp Haim committed
231
            distributed_tgt = target = makeDomain(target)
Martin Reinecke's avatar
Martin Reinecke committed
232
        azm_expander = ContractionOperator(distributed_tgt, spaces=space).adjoint
Philipp Haim's avatar
Philipp Haim committed
233
        assert isinstance(target[space], PowerSpace)
Martin Reinecke's avatar
Martin Reinecke committed
234

235
        twolog = _TwoLogIntegrations(target, space)
Philipp Arras's avatar
Philipp Arras committed
236
        dom = twolog.domain
237

238
        shp = dom[space].shape
Martin Reinecke's avatar
Martin Reinecke committed
239 240
        expander = ContractionOperator(dom, spaces=space).adjoint
        ps_expander = ContractionOperator(twolog.target, spaces=space).adjoint
Philipp Arras's avatar
Philipp Arras committed
241 242 243

        # Prepare constant fields
        foo = np.zeros(shp)
244
        foo[0] = foo[1] = np.sqrt(_log_vol(target[space]))
Martin Reinecke's avatar
Martin Reinecke committed
245
        vflex = DiagonalOperator(makeField(dom[space], foo), dom, space)
Philipp Arras's avatar
Philipp Arras committed
246 247 248

        foo = np.zeros(shp, dtype=np.float64)
        foo[0] += 1
Martin Reinecke's avatar
Martin Reinecke committed
249
        vasp = DiagonalOperator(makeField(dom[space], foo), dom, space)
Philipp Arras's avatar
Philipp Arras committed
250 251

        foo = np.ones(shp)
252
        foo[0] = _log_vol(target[space])**2/12.
Martin Reinecke's avatar
Martin Reinecke committed
253
        shift = DiagonalOperator(makeField(dom[space], foo), dom, space)
Martin Reinecke's avatar
Martin Reinecke committed
254

255
        vslope = DiagonalOperator(
Philipp Arras's avatar
Philipp Arras committed
256
            makeField(target[space], _relative_log_k_lengths(target[space])),
Martin Reinecke's avatar
Martin Reinecke committed
257
            target, space)
258 259

        foo, bar = [np.zeros(target[space].shape) for _ in range(2)]
Philipp Arras's avatar
Philipp Arras committed
260
        bar[1:] = foo[0] = totvol
Philipp Arras's avatar
Philipp Arras committed
261 262 263 264
        vol0, vol1 = [
            DiagonalOperator(makeField(target[space], aa), target, space)
            for aa in (foo, bar)
        ]
265

Martin Reinecke's avatar
Martin Reinecke committed
266
        # Prepare fields for Adder
267
        shift, vol0 = [op(full(op.domain, 1)) for op in (shift, vol0)]
Philipp Arras's avatar
Philipp Arras committed
268 269
        # End prepare constant fields

270
        slope = vslope @ ps_expander @ loglogavgslope
271 272
        sig_flex = vflex @ expander @ flexibility if flexibility is not None else None
        sig_asp = vasp @ expander @ asperity if asperity is not None else None
273
        sig_fluc = vol1 @ ps_expander @ fluctuations
Philipp Haim's avatar
Philipp Haim committed
274
        sig_fluc = vol1 @ ps_expander @ fluctuations
Philipp Arras's avatar
Philipp Arras committed
275

276 277 278 279 280 281 282
        if sig_asp is None and sig_flex is None:
            op = _Normalization(target, space) @ slope
        elif sig_asp is None:
            xi = ducktape(dom, None, key)
            sigma = DiagonalOperator(shift.ptw("sqrt"), dom, space) @ sig_flex
            smooth = _SlopeRemover(target, space) @ twolog @ (sigma * xi)
            op = _Normalization(target, space) @ (slope + smooth)
283 284
        elif sig_flex is None:
            raise ValueError("flexibility may not be disabled on its own")
285 286 287 288 289 290
        else:
            xi = ducktape(dom, None, key)
            sigma = sig_flex * (Adder(shift) @ sig_asp).ptw("sqrt")
            smooth = _SlopeRemover(target, space) @ twolog @ (sigma * xi)
            op = _Normalization(target, space) @ (slope + smooth)

Philipp Haim's avatar
Philipp Haim committed
291
        if N_copies > 0:
Philipp Haim's avatar
Philipp Haim committed
292 293
            op = Distributor @ op
            sig_fluc = Distributor @ sig_fluc
Martin Reinecke's avatar
Martin Reinecke committed
294
            op = Adder(Distributor(vol0)) @ (sig_fluc*(azm_expander @ azm.ptw("reciprocal"))*op)
Philipp Arras's avatar
Philipp Arras committed
295 296
            self._fluc = (_Distributor(dofdex, fluctuations.target,
                                       distributed_tgt[0]) @ fluctuations)
Philipp Haim's avatar
Philipp Haim committed
297
        else:
Martin Reinecke's avatar
Martin Reinecke committed
298
            op = Adder(vol0) @ (sig_fluc*(azm_expander @ azm.ptw("reciprocal"))*op)
Philipp Frank's avatar
fixup  
Philipp Frank committed
299
            self._fluc = fluctuations
Philipp Arras's avatar
Philipp Arras committed
300

Philipp Arras's avatar
Philipp Arras committed
301 302
        self.apply = op.apply
        self._domain, self._target = op.domain, op.target
303
        self._space = space
304
        self._repr_str = "_Amplitude: " + op.__repr__()
Philipp Arras's avatar
Philipp Arras committed
305

Philipp Arras's avatar
Philipp Arras committed
306 307 308 309
    @property
    def fluctuation_amplitude(self):
        return self._fluc

310 311 312
    def __repr__(self):
        return self._repr_str

313 314

class CorrelatedFieldMaker:
315
    """Construction helper for hierarchical correlated field models.
Lukas Platz's avatar
Lukas Platz committed
316 317

    The correlated field models are parametrized by creating
318 319
    power spectrum operators ("amplitudes") via calls to
    :func:`add_fluctuations` that act on the targeted field subdomains.
Lukas Platz's avatar
Lukas Platz committed
320
    During creation of the :class:`CorrelatedFieldMaker` via
321 322 323
    :func:`make`, a global offset from zero of the field model
    can be defined and an operator applying fluctuations
    around this offset is parametrized.
Lukas Platz's avatar
Lukas Platz committed
324 325

    The resulting correlated field model operator has a
Martin Reinecke's avatar
Martin Reinecke committed
326
    :class:`~nifty7.multi_domain.MultiDomain` as its domain and
Lukas Platz's avatar
Lukas Platz committed
327 328 329
    expects its input values to be univariately gaussian.

    The target of the constructed operator will be a
Martin Reinecke's avatar
merge  
Martin Reinecke committed
330
    :class:`~nifty7.domain_tuple.DomainTuple` containing the
331 332
    `target_subdomains` of the added fluctuations in the order of
    the `add_fluctuations` calls.
Lukas Platz's avatar
Lukas Platz committed
333

334
    Creation of the model operator is completed by calling the method
Lukas Platz's avatar
Lukas Platz committed
335 336
    :func:`finalize`, which returns the configured operator.

337 338 339 340 341 342 343 344 345 346
    An operator representing an array of correlated field models
    can be constructed by setting the `total_N` parameter of
    :func:`make`. It will have an
    :class:`~nifty.domains.unstructucture_domain.UnstructureDomain`
    of shape `(total_N,)` prepended to its target domain and represent
    `total_N` correlated fields simulataneously.
    The degree of information sharing between the correlated field
    models can be configured via the `dofdex` parameters
    of :func:`make` and :func:`add_fluctuations`.

Lukas Platz's avatar
Lukas Platz committed
347
    See the methods :func:`make`, :func:`add_fluctuations`
348
    and :func:`finalize` for further usage information."""
349 350 351
    def __init__(self, offset_mean, offset_fluctuations_op, prefix, total_N):
        if not isinstance(offset_fluctuations_op, Operator):
            raise TypeError("offset_fluctuations_op needs to be an operator")
352
        self._a = []
353
        self._target_subdomains = []
Philipp Arras's avatar
Formats  
Philipp Arras committed
354

355 356
        self._offset_mean = offset_mean
        self._azm = offset_fluctuations_op
357
        self._prefix = prefix
Philipp Haim's avatar
Philipp Haim committed
358
        self._total_N = total_N
Philipp Arras's avatar
Formats  
Philipp Arras committed
359

360
    @staticmethod
361
    def make(offset_mean, offset_std, prefix, total_N=0, dofdex=None):
Lukas Platz's avatar
Lukas Platz committed
362 363 364 365 366 367
        """Returns a CorrelatedFieldMaker object.

        Parameters
        ----------
        offset_mean : float
            Mean offset from zero of the correlated field to be made.
368 369 370
        offset_std : tuple of float
            Mean standard deviation and standard deviation of the standard
            deviation of the offset. No, this is not a word duplication.
Lukas Platz's avatar
Lukas Platz committed
371 372
        prefix : string
            Prefix to the names of the domains of the cf operator to be made.
Lukas Platz's avatar
Lukas Platz committed
373
            This determines the names of the operator domain.
374 375
        total_N : integer, optional
            Number of field models to create.
Lukas Platz's avatar
Lukas Platz committed
376 377 378
            If not 0, the first entry of the operators target will be an
            :class:`~nifty.domains.unstructured_domain.UnstructuredDomain`
            with length `total_N`.
379
        dofdex : np.array of integers, optional
Philipp Arras's avatar
Philipp Arras committed
380 381 382
            An integer array specifying the zero mode models used if
            total_N > 1. It needs to have length of total_N. If total_N=3 and
            dofdex=[0,0,1], that means that two models for the zero mode are
383
            instantiated; the first one is used for the first and second
384 385 386
            field model and the second is used for the third field model.
            *If not specified*, use the same zero mode model for all
            constructed field models.
Lukas Platz's avatar
Lukas Platz committed
387
        """
Philipp Frank's avatar
Philipp Frank committed
388 389
        if dofdex is None:
            dofdex = np.full(total_N, 0)
390 391
        elif len(dofdex) != total_N:
            raise ValueError("length of dofdex needs to match total_N")
Philipp Frank's avatar
Philipp Frank committed
392
        N = max(dofdex) + 1 if total_N > 0 else 0
393 394 395
        if len(offset_std) != 2:
            raise TypeError
        zm = LognormalTransform(*offset_std, prefix + 'zeromode', N)
Philipp Frank's avatar
fixup  
Philipp Frank committed
396
        if total_N > 0:
Martin Reinecke's avatar
Martin Reinecke committed
397
            zm = _Distributor(dofdex, zm.target, UnstructuredDomain(total_N)) @ zm
398
        return CorrelatedFieldMaker(offset_mean, zm, prefix, total_N)
399 400

    def add_fluctuations(self,
401
                         target_subdomain,
402 403 404 405
                         fluctuations,
                         flexibility,
                         asperity,
                         loglogavgslope,
Martin Reinecke's avatar
Martin Reinecke committed
406 407 408 409
                         prefix='',
                         index=None,
                         dofdex=None,
                         harmonic_partner=None):
Lukas Platz's avatar
Lukas Platz committed
410 411 412 413 414 415
        """Function to add correlation structures to the field to be made.

        Correlations are described by their power spectrum and the subdomain
        on which they apply.

        The parameters `fluctuations`, `flexibility`, `asperity` and
416 417
        `loglogavgslope` configure the power spectrum model ("amplitude")
        used on the target field subdomain `target_subdomain`.
Lukas Platz's avatar
Lukas Platz committed
418 419 420
        It is assembled as the sum of a power law component
        (linear slope in log-log power-frequency-space),
        a smooth varying component (integrated wiener process) and
421
        a ragged component (un-integrated wiener process).
Lukas Platz's avatar
Lukas Platz committed
422 423 424 425 426 427 428

        Multiple calls to `add_fluctuations` are possible, in which case
        the constructed field will have the outer product of the individual
        power spectra as its global power spectrum.

        Parameters
        ----------
Martin Reinecke's avatar
Martin Reinecke committed
429 430
        target_subdomain : :class:`~nifty7.domain.Domain`, \
                           :class:`~nifty7.domain_tuple.DomainTuple`
Lukas Platz's avatar
Lukas Platz committed
431 432
            Target subdomain on which the correlation structure defined
            in this call should hold.
433
        fluctuations : tuple of float
Lukas Platz's avatar
Lukas Platz committed
434
            Total spectral energy -> Amplitude of the fluctuations
435
        flexibility : tuple of float or None
436
            Amplitude of the non-power-law power spectrum component
437
        asperity : tuple of float or None
438
            Roughness of the non-power-law power spectrum component
439
            Used to accommodate single frequency peaks
440
        loglogavgslope : tuple of float
Lukas Platz's avatar
Lukas Platz committed
441 442 443
            Power law component exponent
        prefix : string
            prefix of the power spectrum parameter domain names
Philipp Arras's avatar
Philipp Arras committed
444 445 446
        index : int
            Position target_subdomain in the final total domain of the
            correlated field operator.
447 448
        dofdex : np.array, optional
            An integer array specifying the power spectrum models used if
Philipp Arras's avatar
Philipp Arras committed
449
            total_N > 1. It needs to have length of total_N. If total_N=3 and
450
            dofdex=[0,0,1], that means that two power spectrum models are
451
            instantiated; the first one is used for the first and second
452 453 454
            field model and the second one is used for the third field model.
            *If not given*, use the same power spectrum model for all
            constructed field models.
Martin Reinecke's avatar
Martin Reinecke committed
455 456
        harmonic_partner : :class:`~nifty7.domain.Domain`, \
                           :class:`~nifty7.domain_tuple.DomainTuple`
Lukas Platz's avatar
Lukas Platz committed
457 458
            In which harmonic space to define the power spectrum
        """
Philipp Frank's avatar
Philipp Frank committed
459
        if harmonic_partner is None:
460
            harmonic_partner = target_subdomain.get_default_codomain()
Philipp Frank's avatar
Fixup  
Philipp Frank committed
461
        else:
462 463
            target_subdomain.check_codomain(harmonic_partner)
            harmonic_partner.check_codomain(target_subdomain)
464

Philipp Haim's avatar
Philipp Haim committed
465 466
        if dofdex is None:
            dofdex = np.full(self._total_N, 0)
467 468
        elif len(dofdex) != self._total_N:
            raise ValueError("length of dofdex needs to match total_N")
Philipp Haim's avatar
Philipp Haim committed
469

Philipp Haim's avatar
Philipp Haim committed
470 471
        if self._total_N > 0:
            N = max(dofdex) + 1
472
            target_subdomain = makeDomain((UnstructuredDomain(N), target_subdomain))
Philipp Haim's avatar
Philipp Haim committed
473
        else:
Philipp Haim's avatar
Philipp Haim committed
474
            N = 0
475
            target_subdomain = makeDomain(target_subdomain)
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
        # assert isinstance(target_subdomain[space], (RGSpace, HPSpace, GLSpace))

        for arg in [fluctuations, loglogavgslope]:
            if len(arg) != 2:
                raise TypeError
        for kw, arg in [("flexibility", flexibility), ("asperity", asperity)]:
            if arg is None:
                continue
            if len(arg) != 2:
                raise TypeError
            if len(arg) == 2 and (arg[0] <= 0. or arg[1] <= 0.):
                ve = "{0} must be strictly positive (or None)"
                raise ValueError(ve.format(kw))
        if flexibility is None and asperity is not None:
            raise ValueError("flexibility may not be disabled on its own")
Philipp Arras's avatar
Philipp Arras committed
491

492 493 494 495
        pre = self._prefix + str(prefix)
        fluct = LognormalTransform(*fluctuations, pre + 'fluctuations', N)
        if flexibility is not None:
            flex = LognormalTransform(*flexibility, pre + 'flexibility', N)
496
        else:
497
            flex = None
498 499
        if asperity is not None:
            asp = LognormalTransform(*asperity, pre + 'asperity', N)
500
        else:
501
            asp = None
502
        avgsl = NormalTransform(*loglogavgslope, pre + 'loglogavgslope', N)
503

Philipp Arras's avatar
Philipp Arras committed
504
        amp = _Amplitude(PowerSpace(harmonic_partner), fluct, flex, asp, avgsl,
505
                         self._azm, target_subdomain[-1].total_volume,
506
                         pre + 'spectrum', dofdex)
Philipp Haim's avatar
Philipp Haim committed
507

508 509
        if index is not None:
            self._a.insert(index, amp)
510
            self._target_subdomains.insert(index, target_subdomain)
511 512
        else:
            self._a.append(amp)
513
            self._target_subdomains.append(target_subdomain)
514

Philipp Arras's avatar
Philipp Arras committed
515 516 517 518 519 520 521 522 523 524
    def finalize(self, prior_info=100):
        """Finishes model construction process and returns the constructed
        operator.

        Parameters
        ----------
        prior_info : integer
            How many prior samples to draw for property verification statistics
            If zero, skips calculating and displaying statistics.
        """
Philipp Haim's avatar
Philipp Haim committed
525
        n_amplitudes = len(self._a)
Philipp Haim's avatar
Philipp Haim committed
526
        if self._total_N > 0:
Philipp Arras's avatar
Philipp Arras committed
527 528 529
            hspace = makeDomain(
                [UnstructuredDomain(self._total_N)] +
                [dd.target[-1].harmonic_partner for dd in self._a])
Philipp Haim's avatar
Philipp Haim committed
530 531
            spaces = tuple(range(1, n_amplitudes + 1))
            amp_space = 1
Philipp Haim's avatar
Philipp Haim committed
532 533
        else:
            hspace = makeDomain(
Philipp Arras's avatar
Philipp Arras committed
534
                [dd.target[0].harmonic_partner for dd in self._a])
Philipp Haim's avatar
Philipp Haim committed
535
            spaces = tuple(range(n_amplitudes))
Philipp Haim's avatar
Philipp Haim committed
536
            amp_space = 0
537

Martin Reinecke's avatar
Martin Reinecke committed
538
        expander = ContractionOperator(hspace, spaces=spaces).adjoint
Philipp Frank's avatar
fixup  
Philipp Frank committed
539
        azm = expander @ self._azm
540

541
        ht = HarmonicTransformOperator(hspace,
542
                                       self._target_subdomains[0][amp_space],
Martin Reinecke's avatar
Martin Reinecke committed
543
                                       space=spaces[0])
544
        for i in range(1, n_amplitudes):
545
            ht = HarmonicTransformOperator(ht.target,
546
                                           self._target_subdomains[i][amp_space],
547 548 549 550 551
                                           space=spaces[i]) @ ht
        a = []
        for ii in range(n_amplitudes):
            co = ContractionOperator(hspace, spaces[:ii] + spaces[ii + 1:])
            pp = self._a[ii].target[amp_space]
Philipp Haim's avatar
Philipp Haim committed
552
            pd = PowerDistributor(co.target, pp, amp_space)
553 554
            a.append(co.adjoint @ pd @ self._a[ii])
        corr = reduce(mul, a)
Philipp Arras's avatar
Philipp Arras committed
555
        op = ht(azm*corr*ducktape(hspace, None, self._prefix + 'xi'))
Philipp Arras's avatar
Philipp Arras committed
556

557 558
        if self._offset_mean is not None:
            offset = self._offset_mean
559 560 561 562 563 564 565
            # Deviations from this offset must not be considered here as they
            # are learned by the zeromode
            if isinstance(offset, (Field, MultiField)):
                op = Adder(offset) @ op
            else:
                offset = float(offset)
                op = Adder(full(op.target, offset)) @ op
566
        self.statistics_summary(prior_info)
567 568
        return op

569 570 571 572 573 574
    def statistics_summary(self, prior_info):
        from ..sugar import from_random

        if prior_info == 0:
            return

575 576
        lst = [('Offset amplitude', self.amplitude_total_offset),
               ('Total fluctuation amplitude', self.total_fluctuation)]
577
        namps = len(self._a)
578 579 580 581 582 583 584 585
        if namps > 1:
            for ii in range(namps):
                lst.append(('Slice fluctuation (space {})'.format(ii),
                            self.slice_fluctuation(ii)))
                lst.append(('Average fluctuation (space {})'.format(ii),
                            self.average_fluctuation(ii)))

        for kk, op in lst:
586 587
            sc = StatCalculator()
            for _ in range(prior_info):
588
                sc.add(op(from_random(op.domain, 'normal')))
Martin Reinecke's avatar
merge  
Martin Reinecke committed
589
            mean = sc.mean.val
Martin Reinecke's avatar
Martin Reinecke committed
590
            stddev = sc.var.ptw("sqrt").val
591
            for m, s in zip(mean.flatten(), stddev.flatten()):
592
                logger.info('{}: {:.02E} ± {:.02E}'.format(kk, m, s))
593 594 595

    def moment_slice_to_average(self, fluctuations_slice_mean, nsamples=1000):
        fluctuations_slice_mean = float(fluctuations_slice_mean)
596 597 598
        if not fluctuations_slice_mean > 0:
            msg = "fluctuations_slice_mean must be greater zero; got {!r}"
            raise ValueError(msg.format(fluctuations_slice_mean))
599
        from ..sugar import from_random
600 601
        scm = 1.
        for a in self._a:
Martin Reinecke's avatar
Martin Reinecke committed
602
            op = a.fluctuation_amplitude*self._azm.ptw("reciprocal")
603
            res = np.array([op(from_random(op.domain, 'normal')).val
604 605
                            for _ in range(nsamples)])
            scm *= res**2 + 1.
606
        return fluctuations_slice_mean/np.mean(np.sqrt(scm))
607

Philipp Arras's avatar
Philipp Arras committed
608
    @property
Philipp Haim's avatar
Philipp Haim committed
609
    def normalized_amplitudes(self):
610
        """Returns the power spectrum operators used in the model"""
611
        return self._a
Philipp Arras's avatar
Philipp Arras committed
612

Philipp Haim's avatar
Philipp Haim committed
613 614 615 616 617 618 619
    @property
    def amplitude(self):
        if len(self._a) > 1:
            s = ('If more than one spectrum is present in the model,',
                 ' no unique set of amplitudes exist because only the',
                 ' relative scale is determined.')
            raise NotImplementedError(s)
Philipp Haim's avatar
Fix  
Philipp Haim committed
620 621
        dom = self._a[0].target
        expand = ContractionOperator(dom, len(dom)-1).adjoint
Philipp Haim's avatar
Philipp Haim committed
622 623
        return self._a[0]*(expand @ self.amplitude_total_offset)

624 625 626
    @property
    def amplitude_total_offset(self):
        return self._azm
Philipp Arras's avatar
Philipp Arras committed
627 628

    @property
629
    def total_fluctuation(self):
630
        """Returns operator which acts on prior or posterior samples"""
631
        if len(self._a) == 0:
Philipp Arras's avatar
Philipp Arras committed
632
            raise NotImplementedError
633
        if len(self._a) == 1:
634
            return self.average_fluctuation(0)
635 636
        q = 1.
        for a in self._a:
Martin Reinecke's avatar
Martin Reinecke committed
637
            fl = a.fluctuation_amplitude*self._azm.ptw("reciprocal")
Philipp Arras's avatar
Philipp Arras committed
638
            q = q*(Adder(full(fl.target, 1.)) @ fl**2)
Martin Reinecke's avatar
Martin Reinecke committed
639
        return (Adder(full(q.target, -1.)) @ q).ptw("sqrt")*self._azm
640

Philipp Arras's avatar
Philipp Arras committed
641
    def slice_fluctuation(self, space):
642
        """Returns operator which acts on prior or posterior samples"""
643
        if len(self._a) == 0:
Philipp Arras's avatar
Philipp Arras committed
644
            raise NotImplementedError
645
        if space >= len(self._a):
646
            raise ValueError("invalid space specified; got {!r}".format(space))
647
        if len(self._a) == 1:
648
            return self.average_fluctuation(0)
649 650
        q = 1.
        for j in range(len(self._a)):
Martin Reinecke's avatar
Martin Reinecke committed
651
            fl = self._a[j].fluctuation_amplitude*self._azm.ptw("reciprocal")
652
            if j == space:
Philipp Arras's avatar
Philipp Arras committed
653
                q = q*fl**2
654
            else:
Philipp Arras's avatar
Philipp Arras committed
655
                q = q*(Adder(full(fl.target, 1.)) @ fl**2)
Martin Reinecke's avatar
Martin Reinecke committed
656
        return q.ptw("sqrt")*self._azm
Philipp Arras's avatar
Philipp Arras committed
657 658

    def average_fluctuation(self, space):
659
        """Returns operator which acts on prior or posterior samples"""
660
        if len(self._a) == 0:
Philipp Arras's avatar
Philipp Arras committed
661
            raise NotImplementedError
662
        if space >= len(self._a):
663
            raise ValueError("invalid space specified; got {!r}".format(space))
664
        if len(self._a) == 1:
Philipp Haim's avatar
Philipp Haim committed
665 666
            return self._a[0].fluctuation_amplitude
        return self._a[space].fluctuation_amplitude
667

668 669
    @staticmethod
    def offset_amplitude_realized(samples):
Philipp Haim's avatar
Philipp Haim committed
670
        spaces = _structured_spaces(samples[0].domain)
671 672
        res = 0.
        for s in samples:
Philipp Haim's avatar
Philipp Haim committed
673
            res = res + s.mean(spaces)**2
Philipp Haim's avatar
Philipp Haim committed
674 675
        res = res/len(samples)
        return np.sqrt(res if np.isscalar(res) else res.val)
Philipp Arras's avatar
Philipp Arras committed
676

677 678 679 680 681 682 683 684
    @staticmethod
    def total_fluctuation_realized(samples):
        return _total_fluctuation_realized(samples)

    @staticmethod
    def slice_fluctuation_realized(samples, space):
        """Computes slice fluctuations from collection of field (defined in signal
        space) realizations."""
Philipp Haim's avatar
Philipp Haim committed
685 686
        spaces = _structured_spaces(samples[0].domain)
        if space >= len(spaces):
687
            raise ValueError("invalid space specified; got {!r}".format(space))
Philipp Haim's avatar
Philipp Haim committed
688
        if len(spaces) == 1:
689
            return _total_fluctuation_realized(samples)
Philipp Haim's avatar
Philipp Haim committed
690
        space = space + spaces[0]
Philipp Arras's avatar
Philipp Arras committed
691
        res1, res2 = 0., 0.
692
        for s in samples:
Philipp Frank's avatar
fixes  
Philipp Frank committed
693 694 695 696
            res1 = res1 + s**2
            res2 = res2 + s.mean(space)**2
        res1 = res1/len(samples)
        res2 = res2/len(samples)
Philipp Haim's avatar
Philipp Haim committed
697
        res = res1.mean(spaces) - res2.mean(spaces[:-1])
Philipp Haim's avatar
Philipp Haim committed
698
        return np.sqrt(res if np.isscalar(res) else res.val)
Philipp Frank's avatar
fixes  
Philipp Frank committed
699

Philipp Arras's avatar
Philipp Arras committed
700
    @staticmethod
701 702 703
    def average_fluctuation_realized(samples, space):
        """Computes average fluctuations from collection of field (defined in signal
        space) realizations."""
Philipp Haim's avatar
Philipp Haim committed
704 705
        spaces = _structured_spaces(samples[0].domain)
        if space >= len(spaces):
706
            raise ValueError("invalid space specified; got {!r}".format(space))
Philipp Haim's avatar
Philipp Haim committed
707
        if len(spaces) == 1:
708
            return _total_fluctuation_realized(samples)
Philipp Haim's avatar
Philipp Haim committed
709 710 711
        space = space + spaces[0]
        sub_spaces = set(spaces)
        sub_spaces.remove(space)
Philipp Arras's avatar
Philipp Arras committed
712
        # Domain containing domain[space] and domain[0] iff total_N>0
Philipp Haim's avatar
Philipp Haim committed
713
        sub_dom = makeDomain([samples[0].domain[ind]
Philipp Arras's avatar
Philipp Arras committed
714
                              for ind in (set([0])-set(spaces)) | set([space])])
Philipp Haim's avatar
Philipp Haim committed
715
        co = ContractionOperator(sub_dom, len(sub_dom)-1)
716
        size = co.domain.size/co.target.size
Philipp Arras's avatar
Philipp Arras committed
717 718
        res = 0.
        for s in samples:
Philipp Haim's avatar
Philipp Haim committed
719
            r = s.mean(sub_spaces)
720
            res = res + (r - co.adjoint(co(r)/size))**2
Philipp Haim's avatar
Philipp Haim committed
721
        res = res.mean(spaces[0])/len(samples)
Philipp Haim's avatar
Philipp Haim committed
722
        return np.sqrt(res if np.isscalar(res) else res.val)