test_jacobian.py 6.11 KB
Newer Older
Philipp Arras's avatar
Philipp Arras committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2019 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.

import numpy as np
import pytest
20
from numpy.testing import assert_
Philipp Arras's avatar
Philipp Arras committed
21
22
23

import nifty5 as ift

24
from ..common import list2fixture
Philipp Arras's avatar
Philipp Arras committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

pmp = pytest.mark.parametrize
space = list2fixture([
    ift.GLSpace(15),
    ift.RGSpace(64, distances=.789),
    ift.RGSpace([32, 32], distances=.789)
])
space1 = space
seed = list2fixture([4, 78, 23])


def _make_linearization(type, space, seed):
    np.random.seed(seed)
    S = ift.ScalingOperator(1., space)
    s = S.draw_sample()
    if type == "Constant":
        return ift.Linearization.make_const(s)
    elif type == "Variable":
        return ift.Linearization.make_var(s)
    raise ValueError('unknown type passed')


def testBasics(space, seed):
    var = _make_linearization("Variable", space, seed)
    model = ift.ScalingOperator(6., var.target)
Martin Reinecke's avatar
Martin Reinecke committed
50
    ift.extra.check_jacobian_consistency(model, var.val)
Philipp Arras's avatar
Philipp Arras committed
51
52
53
54
55
56
57


@pmp('type1', ['Variable', 'Constant'])
@pmp('type2', ['Variable'])
def testBinary(type1, type2, space, seed):
    dom1 = ift.MultiDomain.make({'s1': space})
    dom2 = ift.MultiDomain.make({'s2': space})
58
59
60
61

    # FIXME Remove this?
    _make_linearization(type1, dom1, seed)
    _make_linearization(type2, dom2, seed)
Philipp Arras's avatar
Philipp Arras committed
62
63
64
65
66
67

    dom = ift.MultiDomain.union((dom1, dom2))
    select_s1 = ift.ducktape(None, dom, "s1")
    select_s2 = ift.ducktape(None, dom, "s2")
    model = select_s1*select_s2
    pos = ift.from_random("normal", dom)
Martin Reinecke's avatar
Martin Reinecke committed
68
    ift.extra.check_jacobian_consistency(model, pos, ntries=20)
Philipp Arras's avatar
Philipp Arras committed
69
70
    model = select_s1 + select_s2
    pos = ift.from_random("normal", dom)
Martin Reinecke's avatar
Martin Reinecke committed
71
    ift.extra.check_jacobian_consistency(model, pos, ntries=20)
Philipp Arras's avatar
Philipp Arras committed
72
73
    model = select_s1.scale(3.)
    pos = ift.from_random("normal", dom1)
Martin Reinecke's avatar
Martin Reinecke committed
74
    ift.extra.check_jacobian_consistency(model, pos, ntries=20)
Philipp Arras's avatar
Philipp Arras committed
75
76
    model = ift.ScalingOperator(2.456, space)(select_s1*select_s2)
    pos = ift.from_random("normal", dom)
Martin Reinecke's avatar
Martin Reinecke committed
77
    ift.extra.check_jacobian_consistency(model, pos, ntries=20)
78
    model = ift.sigmoid(2.456*(select_s1*select_s2))
Philipp Arras's avatar
Philipp Arras committed
79
    pos = ift.from_random("normal", dom)
Martin Reinecke's avatar
Martin Reinecke committed
80
    ift.extra.check_jacobian_consistency(model, pos, ntries=20)
Philipp Arras's avatar
Philipp Arras committed
81
82
    pos = ift.from_random("normal", dom)
    model = ift.OuterProduct(pos['s1'], ift.makeDomain(space))
Martin Reinecke's avatar
Martin Reinecke committed
83
    ift.extra.check_jacobian_consistency(model, pos['s2'], ntries=20)
Martin Reinecke's avatar
Martin Reinecke committed
84
    model = select_s1**2
85
    pos = ift.from_random("normal", dom1)
Martin Reinecke's avatar
Martin Reinecke committed
86
    ift.extra.check_jacobian_consistency(model, pos, ntries=20)
Martin Reinecke's avatar
Martin Reinecke committed
87
    model = select_s1.clip(-1, 1)
88
    pos = ift.from_random("normal", dom1)
Martin Reinecke's avatar
Martin Reinecke committed
89
    ift.extra.check_jacobian_consistency(model, pos, ntries=20)
Philipp Arras's avatar
Philipp Arras committed
90
91
92
    if isinstance(space, ift.RGSpace):
        model = ift.FFTOperator(space)(select_s1*select_s2)
        pos = ift.from_random("normal", dom)
Martin Reinecke's avatar
Martin Reinecke committed
93
        ift.extra.check_jacobian_consistency(model, pos, ntries=20)
Philipp Arras's avatar
Philipp Arras committed
94
95
96
97
98


def testModelLibrary(space, seed):
    # Tests amplitude model and coorelated field model
    np.random.seed(seed)
99
    domain = ift.PowerSpace(space.get_default_codomain())
100
101
    model = ift.SLAmplitude(target=domain, n_pix=4, a=.5, k0=2, sm=3, sv=1.5,
                            im=1.75, iv=1.3)
102
    assert_(isinstance(model, ift.Operator))
Philipp Arras's avatar
Philipp Arras committed
103
104
    S = ift.ScalingOperator(1., model.domain)
    pos = S.draw_sample()
Martin Reinecke's avatar
Martin Reinecke committed
105
    ift.extra.check_jacobian_consistency(model, pos, ntries=20)
Philipp Arras's avatar
Philipp Arras committed
106
107
108
109

    model2 = ift.CorrelatedField(space, model)
    S = ift.ScalingOperator(1., model2.domain)
    pos = S.draw_sample()
Martin Reinecke's avatar
Martin Reinecke committed
110
    ift.extra.check_jacobian_consistency(model2, pos, ntries=20)
Philipp Arras's avatar
Philipp Arras committed
111

112
113
114
115
    domtup = ift.DomainTuple.make((space, space))
    model3 = ift.MfCorrelatedField(domtup, [model, model])
    S = ift.ScalingOperator(1., model3.domain)
    pos = S.draw_sample()
Martin Reinecke's avatar
Martin Reinecke committed
116
    ift.extra.check_jacobian_consistency(model3, pos, ntries=20)
117

Philipp Arras's avatar
Philipp Arras committed
118
119
120
121
122
123

def testPointModel(space, seed):
    S = ift.ScalingOperator(1., space)
    pos = S.draw_sample()
    alpha = 1.5
    q = 0.73
Philipp Arras's avatar
Fixups    
Philipp Arras committed
124
    model = ift.InverseGammaOperator(space, alpha, q)
Philipp Arras's avatar
Philipp Arras committed
125
    # FIXME All those cdfs and ppfs are not very accurate
Martin Reinecke's avatar
Martin Reinecke committed
126
    ift.extra.check_jacobian_consistency(model, pos, tol=1e-2, ntries=20)
Martin Reinecke's avatar
Martin Reinecke committed
127

128

Philipp Frank's avatar
Philipp Frank committed
129
@pmp('target', [
Martin Reinecke's avatar
Martin Reinecke committed
130
131
132
    ift.RGSpace(64, distances=.789, harmonic=True),
    ift.RGSpace([32, 32], distances=.789, harmonic=True),
    ift.RGSpace([32, 32, 8], distances=.789, harmonic=True)
133
])
Martin Reinecke's avatar
Martin Reinecke committed
134
135
136
@pmp('causal', [True, False])
@pmp('minimum_phase', [True, False])
@pmp('seed', [4, 78, 23])
Philipp Frank's avatar
Philipp Frank committed
137
138
139
140
141
142
143
144
145
146
147
def testDynamicModel(target, causal, minimum_phase, seed):
    dct = {
            'target': target,
            'harmonic_padding': None,
            'sm_s0': 3.,
            'sm_x0': 1.,
            'key': 'f',
            'causal': causal,
            'minimum_phase': minimum_phase
            }
    model, _ = ift.dynamic_operator(**dct)
Martin Reinecke's avatar
Martin Reinecke committed
148
149
150
    S = ift.ScalingOperator(1., model.domain)
    pos = S.draw_sample()
    # FIXME I dont know why smaller tol fails for 3D example
Martin Reinecke's avatar
Martin Reinecke committed
151
    ift.extra.check_jacobian_consistency(model, pos, tol=1e-5, ntries=20)
Philipp Frank's avatar
Philipp Frank committed
152
    if len(target.shape) > 1:
153
        dct = {
Philipp Frank's avatar
Philipp Frank committed
154
            'target': target,
155
156
157
158
159
160
161
162
163
164
            'harmonic_padding': None,
            'sm_s0': 3.,
            'sm_x0': 1.,
            'key': 'f',
            'lightcone_key': 'c',
            'sigc': 1.,
            'quant': 5,
            'causal': causal,
            'minimum_phase': minimum_phase
        }
Philipp Frank's avatar
Philipp Frank committed
165
166
167
        dct['lightcone_key'] = 'c'
        dct['sigc'] = 1.
        dct['quant'] = 5
168
        model, _ = ift.dynamic_lightcone_operator(**dct)
Martin Reinecke's avatar
Martin Reinecke committed
169
170
171
        S = ift.ScalingOperator(1., model.domain)
        pos = S.draw_sample()
        # FIXME I dont know why smaller tol fails for 3D example
Martin Reinecke's avatar
Martin Reinecke committed
172
        ift.extra.check_jacobian_consistency(
173
            model, pos, tol=1e-5, ntries=20)