plot.py 11.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
Martin Reinecke's avatar
Martin Reinecke committed
14
# Copyright(C) 2013-2018 Max-Planck-Society
15
16
17
18
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.

19
from __future__ import absolute_import, division, print_function
20

Martin Reinecke's avatar
Martin Reinecke committed
21
22
import os

23
24
25
import numpy as np

from ..compat import *
Philipp Arras's avatar
Fixup    
Philipp Arras committed
26
from .. import Field, GLSpace, HPSpace, PowerSpace, RGSpace, dobj
27

Martin Reinecke's avatar
Martin Reinecke committed
28
29
30
31
32
33
34
35
# relevant properties:
# - x/y size
# - x/y/z log
# - x/y/z min/max
# - colorbar/colormap
# - axis on/off
# - title
# - axis labels
Martin Reinecke's avatar
Martin Reinecke committed
36
# - labels
Martin Reinecke's avatar
Martin Reinecke committed
37

Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
38

Martin Reinecke's avatar
Martin Reinecke committed
39
40
41
def _mollweide_helper(xsize):
    xsize = int(xsize)
    ysize = xsize//2
Martin Reinecke's avatar
Martin Reinecke committed
42
    res = np.full(shape=(ysize, xsize), fill_value=np.nan, dtype=np.float64)
Martin Reinecke's avatar
Martin Reinecke committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56
    xc = (xsize-1)*0.5
    yc = (ysize-1)*0.5
    u, v = np.meshgrid(np.arange(xsize), np.arange(ysize))
    u = 2*(u-xc)/(xc/1.02)
    v = (v-yc)/(yc/1.02)

    mask = np.where((u*u*0.25 + v*v) <= 1.)
    t1 = v[mask]
    theta = 0.5*np.pi-(
        np.arcsin(2/np.pi*(np.arcsin(t1) + t1*np.sqrt((1.-t1)*(1+t1)))))
    phi = -0.5*np.pi*u[mask]/np.maximum(np.sqrt((1-t1)*(1+t1)), 1e-6)
    phi = np.where(phi < 0, phi+2*np.pi, phi)
    return res, mask, theta, phi

Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
57

Martin Reinecke's avatar
Martin Reinecke committed
58
59
60
61
62
63
64
65
66
def _find_closest(A, target):
    # A must be sorted
    idx = A.searchsorted(target)
    idx = np.clip(idx, 1, len(A)-1)
    left = A[idx-1]
    right = A[idx]
    idx -= target - left < right - target
    return idx

Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
67

Martin Reinecke's avatar
Martin Reinecke committed
68
def _makeplot(name):
69
    import matplotlib.pyplot as plt
Martin Reinecke's avatar
Martin Reinecke committed
70
    if dobj.rank != 0:
71
        plt.close()
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
72
        return
Martin Reinecke's avatar
Martin Reinecke committed
73
74
    if name is None:
        plt.show()
75
        plt.close()
Martin Reinecke's avatar
Martin Reinecke committed
76
77
        return
    extension = os.path.splitext(name)[1]
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
78
    if extension == ".pdf":
Martin Reinecke's avatar
Martin Reinecke committed
79
80
        plt.savefig(name)
        plt.close()
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
81
    elif extension == ".png":
Martin Reinecke's avatar
Martin Reinecke committed
82
83
        plt.savefig(name)
        plt.close()
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
84
85
86
87
88
89
90
91
92
93
    # elif extension==".html":
        # import mpld3
        # mpld3.save_html(plt.gcf(),fileobj=name,no_extras=True)
        # import plotly.offline as py
        # import plotly.tools as tls
        # plotly_fig = tls.mpl_to_plotly(plt.gcf())
        # py.plot(plotly_fig,filename=name)
        # py.plot_mpl(plt.gcf(),filename=name)
        # import bokeh
        # bokeh.mpl.to_bokeh(plt.gcf())
Martin Reinecke's avatar
Martin Reinecke committed
94
95
96
    else:
        raise ValueError("file format not understood")

Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
97

Martin Reinecke's avatar
Martin Reinecke committed
98
def _limit_xy(**kwargs):
Martin Reinecke's avatar
Martin Reinecke committed
99
    import matplotlib.pyplot as plt
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
100
    x1, x2, y1, y2 = plt.axis()
clienhar's avatar
clienhar committed
101
102
103
104
    x1 = kwargs.pop("xmin", x1)
    x2 = kwargs.pop("xmax", x2)
    y1 = kwargs.pop("ymin", y1)
    y2 = kwargs.pop("ymax", y2)
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
105
106
    plt.axis((x1, x2, y1, y2))

Martin Reinecke's avatar
Martin Reinecke committed
107

Martin Reinecke's avatar
Martin Reinecke committed
108
109
110
111
112
113
114
115
116
def _register_cmaps():
    try:
        if _register_cmaps._cmaps_registered:
            return
    except AttributeError:
        _register_cmaps._cmaps_registered = True

    from matplotlib.colors import LinearSegmentedColormap
    import matplotlib.pyplot as plt
Martin Reinecke's avatar
Martin Reinecke committed
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
    planckcmap = {'red':   ((0., 0., 0.), (.4, 0., 0.), (.5, 1., 1.),
                            (.7, 1., 1.), (.8, .83, .83), (.9, .67, .67),
                            (1., .5, .5)),
                  'green': ((0., 0., 0.), (.2, 0., 0.), (.3, .3, .3),
                            (.4, .7, .7), (.5, 1., 1.), (.6, .7, .7),
                            (.7, .3, .3), (.8, 0., 0.), (1., 0., 0.)),
                  'blue':  ((0., .5, .5), (.1, .67, .67), (.2, .83, .83),
                            (.3, 1., 1.), (.5, 1., 1.), (.6, 0., 0.),
                            (1., 0., 0.))}
    he_cmap = {'red':   ((0., 0., 0.), (.167, 0., 0.), (.333, .5, .5),
                         (.5, 1., 1.), (1., 1., 1.)),
               'green': ((0., 0., 0.), (.5, 0., 0.), (.667, .5, .5),
                         (.833, 1., 1.), (1., 1., 1.)),
               'blue':  ((0., 0., 0.), (.167, 1., 1.), (.333, .5, .5),
                         (.5, 0., 0.), (1., 1., 1.))}
    fd_cmap = {'red':   ((0., .35, .35), (.1, .4, .4), (.2, .25, .25),
                         (.41, .47, .47), (.5, .8, .8), (.56, .96, .96),
                         (.59, 1., 1.), (.74, .8, .8), (.8, .8, .8),
                         (.9, .5, .5), (1., .4, .4)),
               'green': ((0., 0., 0.), (.2, 0., 0.), (.362, .88, .88),
                         (.5, 1., 1.), (.638, .88, .88), (.8, .25, .25),
                         (.9, .3, .3), (1., .2, .2)),
               'blue':  ((0., .35, .35), (.1, .4, .4), (.2, .8, .8),
                         (.26, .8, .8), (.41, 1., 1.), (.44, .96, .96),
                         (.5, .8, .8), (.59, .47, .47), (.8, 0., 0.),
                         (1., 0., 0.))}
    fdu_cmap = {'red':   ((0., 1., 1.), (0.1, .8, .8), (.2, .65, .65),
                          (.41, .6, .6), (.5, .7, .7), (.56, .96, .96),
                          (.59, 1., 1.), (.74, .8, .8), (.8, .8, .8),
                          (.9, .5, .5), (1., .4, .4)),
                'green': ((0., .9, .9), (.362, .95, .95), (.5, 1., 1.),
                          (.638, .88, .88), (.8, .25, .25), (.9, .3, .3),
                          (1., .2, .2)),
                'blue':  ((0., 1., 1.), (.1, .8, .8), (.2, 1., 1.),
                          (.41, 1., 1.), (.44, .96, .96), (.5, .7, .7),
                          (.59, .42, .42), (.8, 0., 0.), (1., 0., 0.))}
    pm_cmap = {'red':   ((0., 1., 1.), (.1, .96, .96), (.2, .84, .84),
                         (.3, .64, .64), (.4, .36, .36), (.5, 0., 0.),
                         (1., 0., 0.)),
               'green': ((0., .5, .5), (.1, .32, .32), (.2, .18, .18),
                         (.3, .8, .8),  (.4, .2, .2), (.5, 0., 0.),
                         (.6, .2, .2), (.7, .8, .8), (.8, .18, .18),
                         (.9, .32, .32), (1., .5, .5)),
               'blue':  ((0., 0., 0.), (.5, 0., 0.), (.6, .36, .36),
                         (.7, .64, .64), (.8, .84, .84), (.9, .96, .96),
                         (1., 1., 1.))}
Martin Reinecke's avatar
Martin Reinecke committed
163
164
165

    plt.register_cmap(cmap=LinearSegmentedColormap("Planck-like", planckcmap))
    plt.register_cmap(cmap=LinearSegmentedColormap("High Energy", he_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
166
    plt.register_cmap(cmap=LinearSegmentedColormap("Faraday Map", fd_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
167
168
    plt.register_cmap(cmap=LinearSegmentedColormap("Faraday Uncertainty",
                                                   fdu_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
169
    plt.register_cmap(cmap=LinearSegmentedColormap("Plus Minus", pm_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
170

Martin Reinecke's avatar
Martin Reinecke committed
171

Martin Reinecke's avatar
Martin Reinecke committed
172
def plot(f, **kwargs):
173
    import matplotlib.pyplot as plt
Martin Reinecke's avatar
Martin Reinecke committed
174
    _register_cmaps()
175
176
177
    if isinstance(f, Field):
        f = [f]
    if not isinstance(f, list):
Martin Reinecke's avatar
Martin Reinecke committed
178
        raise TypeError("incorrect data type")
179
180
181
182
183
184
185
186
187
188
189
    for i, fld in enumerate(f):
        if not isinstance(fld, Field):
            raise TypeError("incorrect data type")
        if i == 0:
            dom = fld.domain
            if len(dom) != 1:
                raise ValueError("input field must have exactly one domain")
        else:
            if fld.domain != dom:
                raise ValueError("domain mismatch")
            if not (isinstance(dom[0], PowerSpace) or
190
                    (isinstance(dom[0], RGSpace) and len(dom[0].shape) == 1)):
191
                raise ValueError("PowerSpace or 1D RGSpace required")
Martin Reinecke's avatar
Martin Reinecke committed
192

clienhar's avatar
clienhar committed
193
    label = kwargs.pop("label", None)
Martin Reinecke's avatar
Martin Reinecke committed
194
195
    if label is None:
        label = [None] * len(f)
196
    if not isinstance(label, list):
Martin Reinecke's avatar
Martin Reinecke committed
197
198
        label = [label]

clienhar's avatar
clienhar committed
199
    linewidth = kwargs.pop("linewidth", None)
Philipp Arras's avatar
Philipp Arras committed
200
    if linewidth is None:
Martin Reinecke's avatar
Martin Reinecke committed
201
        linewidth = [1.] * len(f)
Philipp Arras's avatar
Philipp Arras committed
202
203
204
    if not isinstance(linewidth, list):
        linewidth = [linewidth]

clienhar's avatar
clienhar committed
205
    alpha = kwargs.pop("alpha", None)
Philipp Arras's avatar
Philipp Arras committed
206
207
208
209
210
    if alpha is None:
        alpha = [None] * len(f)
    if not isinstance(alpha, list):
        alpha = [alpha]

211
    dom = dom[0]
Martin Reinecke's avatar
Martin Reinecke committed
212
    fig = plt.figure()
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
213
    ax = fig.add_subplot(1, 1, 1)
Martin Reinecke's avatar
Martin Reinecke committed
214

clienhar's avatar
clienhar committed
215
216
    xsize = kwargs.pop("xsize", 6)
    ysize = kwargs.pop("ysize", 6)
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
217
    fig.set_size_inches(xsize, ysize)
clienhar's avatar
clienhar committed
218
219
220
221
    ax.set_title(kwargs.pop("title", ""))
    ax.set_xlabel(kwargs.pop("xlabel", ""))
    ax.set_ylabel(kwargs.pop("ylabel", ""))
    cmap = kwargs.pop("colormap", plt.rcParams['image.cmap'])
Martin Reinecke's avatar
Martin Reinecke committed
222
    if isinstance(dom, RGSpace):
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
223
        if len(dom.shape) == 1:
Martin Reinecke's avatar
Martin Reinecke committed
224
225
            npoints = dom.shape[0]
            dist = dom.distances[0]
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
226
            xcoord = np.arange(npoints, dtype=np.float64)*dist
Martin Reinecke's avatar
Martin Reinecke committed
227
            for i, fld in enumerate(f):
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
228
                ycoord = fld.to_global_data()
Martin Reinecke's avatar
Martin Reinecke committed
229
230
                plt.plot(xcoord, ycoord, label=label[i],
                         linewidth=linewidth[i], alpha=alpha[i])
Martin Reinecke's avatar
Martin Reinecke committed
231
            _limit_xy(**kwargs)
232
233
            if label != ([None]*len(f)):
                plt.legend()
Martin Reinecke's avatar
Martin Reinecke committed
234
            _makeplot(kwargs.get("name"))
Martin Reinecke's avatar
Martin Reinecke committed
235
            return
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
236
        elif len(dom.shape) == 2:
237
            f = f[0]
Martin Reinecke's avatar
Martin Reinecke committed
238
239
240
241
            nx = dom.shape[0]
            ny = dom.shape[1]
            dx = dom.distances[0]
            dy = dom.distances[1]
Philipp Arras's avatar
Philipp Arras committed
242
243
            xc = np.arange(nx, dtype=np.float64)*dx
            yc = np.arange(ny, dtype=np.float64)*dy
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
244
            im = ax.imshow(fld.to_global_data(),
Martin Reinecke's avatar
Martin Reinecke committed
245
                           extent=[xc[0], xc[-1], yc[0], yc[-1]],
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
246
                           vmin=kwargs.get("zmin"),
Martin Reinecke's avatar
Martin Reinecke committed
247
                           vmax=kwargs.get("zmax"), cmap=cmap, origin="lower")
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
248
249
250
251
            # from mpl_toolkits.axes_grid1 import make_axes_locatable
            # divider = make_axes_locatable(ax)
            # cax = divider.append_axes("right", size="5%", pad=0.05)
            # plt.colorbar(im,cax=cax)
Martin Reinecke's avatar
Martin Reinecke committed
252
            plt.colorbar(im)
Martin Reinecke's avatar
Martin Reinecke committed
253
254
            _limit_xy(**kwargs)
            _makeplot(kwargs.get("name"))
Martin Reinecke's avatar
Martin Reinecke committed
255
256
257
258
259
            return
    elif isinstance(dom, PowerSpace):
        plt.xscale('log')
        plt.yscale('log')
        plt.title('power')
Philipp Arras's avatar
Philipp Arras committed
260
        xcoord = dom.k_lengths
Martin Reinecke's avatar
Martin Reinecke committed
261
        for i, fld in enumerate(f):
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
262
            ycoord = fld.to_global_data()
Martin Reinecke's avatar
Martin Reinecke committed
263
264
            plt.plot(xcoord, ycoord, label=label[i],
                     linewidth=linewidth[i], alpha=alpha[i])
Martin Reinecke's avatar
Martin Reinecke committed
265
        _limit_xy(**kwargs)
266
267
        if label != ([None]*len(f)):
            plt.legend()
Martin Reinecke's avatar
Martin Reinecke committed
268
        _makeplot(kwargs.get("name"))
Martin Reinecke's avatar
Martin Reinecke committed
269
270
        return
    elif isinstance(dom, HPSpace):
271
        f = f[0]
Martin Reinecke's avatar
Martin Reinecke committed
272
273
274
275
276
277
278
        import pyHealpix
        xsize = 800
        res, mask, theta, phi = _mollweide_helper(xsize)

        ptg = np.empty((phi.size, 2), dtype=np.float64)
        ptg[:, 0] = theta
        ptg[:, 1] = phi
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
279
280
        base = pyHealpix.Healpix_Base(int(np.sqrt(f.size//12)), "RING")
        res[mask] = f.to_global_data()[base.ang2pix(ptg)]
Martin Reinecke's avatar
Martin Reinecke committed
281
        plt.axis('off')
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
282
        plt.imshow(res, vmin=kwargs.get("zmin"), vmax=kwargs.get("zmax"),
Martin Reinecke's avatar
Martin Reinecke committed
283
                   cmap=cmap, origin="lower")
Martin Reinecke's avatar
Martin Reinecke committed
284
        plt.colorbar(orientation="horizontal")
Martin Reinecke's avatar
Martin Reinecke committed
285
        _makeplot(kwargs.get("name"))
Martin Reinecke's avatar
Martin Reinecke committed
286
287
        return
    elif isinstance(dom, GLSpace):
288
        f = f[0]
Martin Reinecke's avatar
Martin Reinecke committed
289
290
291
292
293
294
295
296
        import pyHealpix
        xsize = 800
        res, mask, theta, phi = _mollweide_helper(xsize)
        ra = np.linspace(0, 2*np.pi, dom.nlon+1)
        dec = pyHealpix.GL_thetas(dom.nlat)
        ilat = _find_closest(dec, theta)
        ilon = _find_closest(ra, phi)
        ilon = np.where(ilon == dom.nlon, 0, ilon)
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
297
        res[mask] = f.to_global_data()[ilat*dom.nlon + ilon]
Martin Reinecke's avatar
Martin Reinecke committed
298
299

        plt.axis('off')
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
300
        plt.imshow(res, vmin=kwargs.get("zmin"), vmax=kwargs.get("zmax"),
Martin Reinecke's avatar
Martin Reinecke committed
301
                   cmap=cmap, origin="lower")
Martin Reinecke's avatar
Martin Reinecke committed
302
        plt.colorbar(orientation="horizontal")
Martin Reinecke's avatar
Martin Reinecke committed
303
        _makeplot(kwargs.get("name"))
Martin Reinecke's avatar
Martin Reinecke committed
304
305
306
        return

    raise ValueError("Field type not(yet) supported")