field.py 47.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
14
15
16
17
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
18

csongor's avatar
csongor committed
19
from __future__ import division
20
21

import itertools
csongor's avatar
csongor committed
22
23
import numpy as np

Theo Steininger's avatar
Theo Steininger committed
24
25
from keepers import Versionable,\
                    Loggable
Jait Dixit's avatar
Jait Dixit committed
26

27
from d2o import distributed_data_object,\
28
    STRATEGIES as DISTRIBUTION_STRATEGIES
csongor's avatar
csongor committed
29

30
from nifty.config import nifty_configuration as gc
csongor's avatar
csongor committed
31

32
from nifty.domain_object import DomainObject
33

34
from nifty.spaces.power_space import PowerSpace
csongor's avatar
csongor committed
35

csongor's avatar
csongor committed
36
import nifty.nifty_utilities as utilities
37
38
from nifty.random import Random

csongor's avatar
csongor committed
39

Jait Dixit's avatar
Jait Dixit committed
40
class Field(Loggable, Versionable, object):
Theo Steininger's avatar
Theo Steininger committed
41
42
43
    """ The discrete representation of a continuous field over multiple spaces.

    In NIFTY, Fields are used to store data arrays and carry all the needed
44
    metainformation (i.e. the domain) for operators to be able to work on them.
Theo Steininger's avatar
Theo Steininger committed
45
46
    In addition Field has methods to work with power-spectra.

47
48
49
50
    Parameters
    ----------
    domain : DomainObject
        One of the space types NIFTY supports. RGSpace, GLSpace, HPSpace,
Theo Steininger's avatar
Theo Steininger committed
51
        LMSpace or PowerSpace. It might also be a FieldArray, which is
52
        an unstructured domain.
Theo Steininger's avatar
Theo Steininger committed
53

54
55
56
57
    val : scalar, numpy.ndarray, distributed_data_object, Field
        The values the array should contain after init. A scalar input will
        fill the whole array with this scalar. If an array is provided the
        array's dimensions must match the domain's.
Theo Steininger's avatar
Theo Steininger committed
58

59
60
    dtype : type
        A numpy.type. Most common are int, float and complex.
Theo Steininger's avatar
Theo Steininger committed
61

62
63
64
65
66
67
    distribution_strategy: optional[{'fftw', 'equal', 'not', 'freeform'}]
        Specifies which distributor will be created and used.
        'fftw'      uses the distribution strategy of pyfftw,
        'equal'     tries to  distribute the data as uniform as possible
        'not'       does not distribute the data at all
        'freeform'  distribute the data according to the given local data/shape
Theo Steininger's avatar
Theo Steininger committed
68

69
70
71
72
73
    copy: boolean

    Attributes
    ----------
    val : distributed_data_object
Theo Steininger's avatar
Theo Steininger committed
74

75
76
77
78
79
80
81
    domain : DomainObject
        See Parameters.
    domain_axes : tuple of tuples
        Enumerates the axes of the Field
    dtype : type
        Contains the datatype stored in the Field.
    distribution_strategy : string
Theo Steininger's avatar
Theo Steininger committed
82
83
        Name of the used distribution_strategy.

84
85
86
87
88
89
90
    Raise
    -----
    TypeError
        Raised if
            *the given domain contains something that is not a DomainObject
             instance
            *val is an array that has a different dimension than the domain
Theo Steininger's avatar
Theo Steininger committed
91

92
93
94
95
96
97
98
99
100
101
102
    Examples
    --------
    >>> a = Field(RGSpace([4,5]),val=2)
    >>> a.val
    <distributed_data_object>
    array([[2, 2, 2, 2, 2],
           [2, 2, 2, 2, 2],
           [2, 2, 2, 2, 2],
           [2, 2, 2, 2, 2]])
    >>> a.dtype
    dtype('int64')
Theo Steininger's avatar
Theo Steininger committed
103

104
105
106
107
108
    See Also
    --------
    distributed_data_object

    """
109

theos's avatar
theos committed
110
    # ---Initialization methods---
111

112
    def __init__(self, domain=None, val=None, dtype=None,
113
                 distribution_strategy=None, copy=False):
csongor's avatar
csongor committed
114

115
        self.domain = self._parse_domain(domain=domain, val=val)
116
        self.domain_axes = self._get_axes_tuple(self.domain)
csongor's avatar
csongor committed
117

theos's avatar
theos committed
118
        self.dtype = self._infer_dtype(dtype=dtype,
119
                                       val=val)
120

121
122
123
        self.distribution_strategy = self._parse_distribution_strategy(
                                distribution_strategy=distribution_strategy,
                                val=val)
csongor's avatar
csongor committed
124

125
126
127
128
        if val is None:
            self._val = None
        else:
            self.set_val(new_val=val, copy=copy)
csongor's avatar
csongor committed
129

130
    def _parse_domain(self, domain, val=None):
131
        if domain is None:
132
133
134
135
            if isinstance(val, Field):
                domain = val.domain
            else:
                domain = ()
136
        elif isinstance(domain, DomainObject):
137
            domain = (domain,)
138
139
140
        elif not isinstance(domain, tuple):
            domain = tuple(domain)

csongor's avatar
csongor committed
141
        for d in domain:
142
            if not isinstance(d, DomainObject):
143
144
                raise TypeError(
                    "Given domain contains something that is not a "
145
                    "DomainObject instance.")
csongor's avatar
csongor committed
146
147
        return domain

theos's avatar
theos committed
148
149
150
151
152
153
154
155
156
157
    def _get_axes_tuple(self, things_with_shape, start=0):
        i = start
        axes_list = []
        for thing in things_with_shape:
            l = []
            for j in range(len(thing.shape)):
                l += [i]
                i += 1
            axes_list += [tuple(l)]
        return tuple(axes_list)
158

159
    def _infer_dtype(self, dtype, val):
csongor's avatar
csongor committed
160
        if dtype is None:
161
            try:
162
                dtype = val.dtype
163
            except AttributeError:
Theo Steininger's avatar
Theo Steininger committed
164
165
166
                try:
                    if val is None:
                        raise TypeError
167
                    dtype = np.result_type(val)
Theo Steininger's avatar
Theo Steininger committed
168
                except(TypeError):
169
                    dtype = np.dtype(gc['default_field_dtype'])
theos's avatar
theos committed
170
        else:
171
            dtype = np.dtype(dtype)
172

theos's avatar
theos committed
173
        return dtype
174

175
176
    def _parse_distribution_strategy(self, distribution_strategy, val):
        if distribution_strategy is None:
177
            if isinstance(val, distributed_data_object):
178
                distribution_strategy = val.distribution_strategy
179
            elif isinstance(val, Field):
180
                distribution_strategy = val.distribution_strategy
181
            else:
182
                self.logger.debug("distribution_strategy set to default!")
183
                distribution_strategy = gc['default_distribution_strategy']
184
        elif distribution_strategy not in DISTRIBUTION_STRATEGIES['global']:
185
186
187
            raise ValueError(
                    "distribution_strategy must be a global-type "
                    "strategy.")
188
        return distribution_strategy
189
190

    # ---Factory methods---
191

192
    @classmethod
193
    def from_random(cls, random_type, domain=None, dtype=None,
194
                    distribution_strategy=None, **kwargs):
195
196
197
198
199
        """ Draws a random field with the given parameters.

        Parameters
        ----------
        cls : class
Theo Steininger's avatar
Theo Steininger committed
200

201
202
203
        random_type : String
            'pm1', 'normal', 'uniform' are the supported arguments for this
            method.
Theo Steininger's avatar
Theo Steininger committed
204

205
206
        domain : DomainObject
            The domain of the output random field
Theo Steininger's avatar
Theo Steininger committed
207

208
209
        dtype : type
            The datatype of the output random field
Theo Steininger's avatar
Theo Steininger committed
210

211
212
        distribution_strategy : all supported distribution strategies
            The distribution strategy of the output random field
Theo Steininger's avatar
Theo Steininger committed
213

214
215
216
217
218
219
220
        Returns
        -------
        out : Field
            The output object.

        See Also
        --------
221
        power_synthesize
Theo Steininger's avatar
Theo Steininger committed
222

223
224

        """
Theo Steininger's avatar
Theo Steininger committed
225

226
        # create a initially empty field
227
        f = cls(domain=domain, dtype=dtype,
228
                distribution_strategy=distribution_strategy)
229
230
231
232
233
234
235

        # now use the processed input in terms of f in order to parse the
        # random arguments
        random_arguments = cls._parse_random_arguments(random_type=random_type,
                                                       f=f,
                                                       **kwargs)

Martin Reinecke's avatar
Martin Reinecke committed
236
        # extract the distributed_data_object from f and apply the appropriate
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
        # random number generator to it
        sample = f.get_val(copy=False)
        generator_function = getattr(Random, random_type)
        sample.apply_generator(
            lambda shape: generator_function(dtype=f.dtype,
                                             shape=shape,
                                             **random_arguments))
        return f

    @staticmethod
    def _parse_random_arguments(random_type, f, **kwargs):
        if random_type == "pm1":
            random_arguments = {}

        elif random_type == "normal":
            mean = kwargs.get('mean', 0)
            std = kwargs.get('std', 1)
            random_arguments = {'mean': mean,
                                'std': std}

        elif random_type == "uniform":
            low = kwargs.get('low', 0)
            high = kwargs.get('high', 1)
            random_arguments = {'low': low,
                                'high': high}

csongor's avatar
csongor committed
263
        else:
264
265
            raise KeyError(
                "unsupported random key '" + str(random_type) + "'.")
csongor's avatar
csongor committed
266

267
        return random_arguments
csongor's avatar
csongor committed
268

269
270
    # ---Powerspectral methods---

Theo Steininger's avatar
Theo Steininger committed
271
    def power_analyze(self, spaces=None, logarithmic=False, nbin=None,
272
                      binbounds=None, keep_phase_information=False):
Theo Steininger's avatar
Theo Steininger committed
273
        """ Computes the square root power spectrum for a subspace of `self`.
Theo Steininger's avatar
Theo Steininger committed
274

Theo Steininger's avatar
Theo Steininger committed
275
276
277
        Creates a PowerSpace for the space addressed by `spaces` with the given
        binning and computes the power spectrum as a Field over this
        PowerSpace. This can only be done if the subspace to  be analyzed is a
278
        harmonic space. The resulting field has the same units as the initial
Theo Steininger's avatar
Theo Steininger committed
279
        field, corresponding to the square root of the power spectrum.
280
281
282

        Parameters
        ----------
Theo Steininger's avatar
Theo Steininger committed
283
284
285
286
287
        spaces : int *optional*
            The subspace for which the powerspectrum shall be computed
            (default : None).
        logarithmic : boolean *optional*
            True if the output PowerSpace should use logarithmic binning.
288
            {default : False}
Theo Steininger's avatar
Theo Steininger committed
289
290
291
292
293
294
        nbin : int *optional*
            The number of bins the resulting PowerSpace shall have
            (default : None).
            if nbin==None : maximum number of bins is used
        binbounds : array-like *optional*
            Inner bounds of the bins (default : None).
Martin Reinecke's avatar
Martin Reinecke committed
295
296
            Overrides nbin and logarithmic.
            if binbounds==None : bins are inferred.
297
298
299
300
301
302
303
304
305
306
        keep_phase_information : boolean, *optional*
            If False, return a real-valued result containing the power spectrum
            of the input Field.
            If True, return a complex-valued result whose real component
            contains the power spectrum computed from the real part of the
            input Field, and whose imaginary component contains the power
            spectrum computed from the imaginary part of the input Field.
            The absolute value of this result should be identical to the output
            of power_analyze with keep_phase_information=False.
            (default : False).
Theo Steininger's avatar
Theo Steininger committed
307

308
309
310
311
        Raise
        -----
        ValueError
            Raised if
Theo Steininger's avatar
Theo Steininger committed
312
313
                *len(domain) is != 1 when spaces==None
                *len(spaces) is != 1 if not None
314
                *the analyzed space is not harmonic
Theo Steininger's avatar
Theo Steininger committed
315

316
317
        Returns
        -------
Theo Steininger's avatar
Theo Steininger committed
318
        out : Field
319
320
321
322
323
324
            The output object. It's domain is a PowerSpace and it contains
            the power spectrum of 'self's field.

        See Also
        --------
        power_synthesize, PowerSpace
Theo Steininger's avatar
Theo Steininger committed
325

326
        """
Theo Steininger's avatar
Theo Steininger committed
327

Theo Steininger's avatar
Theo Steininger committed
328
        # check if all spaces in `self.domain` are either harmonic or
329
330
331
        # power_space instances
        for sp in self.domain:
            if not sp.harmonic and not isinstance(sp, PowerSpace):
Theo Steininger's avatar
Theo Steininger committed
332
                self.logger.info(
333
                    "Field has a space in `domain` which is neither "
334
335
336
                    "harmonic nor a PowerSpace.")

        # check if the `spaces` input is valid
337
338
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
        if spaces is None:
339
            spaces = range(len(self.domain))
340
341

        if len(spaces) == 0:
342
343
            raise ValueError(
                "No space for analysis specified.")
344

345
346
347
348
349
350
351
352
353
354
355
356
357
        if keep_phase_information:
            parts_val = self._hermitian_decomposition(
                                              domain=self.domain,
                                              val=self.val,
                                              spaces=spaces,
                                              domain_axes=self.domain_axes,
                                              preserve_gaussian_variance=False)
            parts = [self.copy_empty().set_val(part_val, copy=False)
                     for part_val in parts_val]
        else:
            parts = [self]

        parts = [abs(part)**2 for part in parts]
358
359

        for space_index in spaces:
360
361
            parts = [self._single_power_analyze(
                                work_field=part,
362
363
364
                                space_index=space_index,
                                logarithmic=logarithmic,
                                nbin=nbin,
365
366
                                binbounds=binbounds)
                     for part in parts]
367

368
369
370
371
372
373
        if keep_phase_information:
            result_field = parts[0] + 1j*parts[1]
        else:
            result_field = parts[0]

        return result_field
374
375
376

    @classmethod
    def _single_power_analyze(cls, work_field, space_index, logarithmic, nbin,
377
                              binbounds):
378

379
        if not work_field.domain[space_index].harmonic:
380
381
            raise ValueError(
                "The analyzed space must be harmonic.")
382

383
384
385
386
387
388
        # Create the target PowerSpace instance:
        # If the associated signal-space field was real, we extract the
        # hermitian and anti-hermitian parts of `self` and put them
        # into the real and imaginary parts of the power spectrum.
        # If it was complex, all the power is put into a real power spectrum.

389
        distribution_strategy = \
390
391
            work_field.val.get_axes_local_distribution_strategy(
                work_field.domain_axes[space_index])
392

393
        harmonic_domain = work_field.domain[space_index]
394
        power_domain = PowerSpace(harmonic_partner=harmonic_domain,
395
                                  distribution_strategy=distribution_strategy,
Theo Steininger's avatar
Theo Steininger committed
396
397
                                  logarithmic=logarithmic, nbin=nbin,
                                  binbounds=binbounds)
398

399
400
        power_spectrum = cls._calculate_power_spectrum(
                                field_val=work_field.val,
Martin Reinecke's avatar
Martin Reinecke committed
401
                                pdomain=power_domain,
402
                                axes=work_field.domain_axes[space_index])
403
404

        # create the result field and put power_spectrum into it
405
        result_domain = list(work_field.domain)
406
        result_domain[space_index] = power_domain
407
        result_dtype = power_spectrum.dtype
408

409
        result_field = work_field.copy_empty(
410
                   domain=result_domain,
411
                   dtype=result_dtype,
412
                   distribution_strategy=power_spectrum.distribution_strategy)
413
414
415
416
        result_field.set_val(new_val=power_spectrum, copy=False)

        return result_field

417
    @classmethod
Martin Reinecke's avatar
Martin Reinecke committed
418
    def _calculate_power_spectrum(cls, field_val, pdomain, axes=None):
419

Martin Reinecke's avatar
Martin Reinecke committed
420
        pindex = pdomain.pindex
421
        if axes is not None:
422
423
424
425
426
427
            pindex = cls._shape_up_pindex(
                            pindex=pindex,
                            target_shape=field_val.shape,
                            target_strategy=field_val.distribution_strategy,
                            axes=axes)
        power_spectrum = pindex.bincount(weights=field_val,
428
                                         axis=axes)
Martin Reinecke's avatar
Martin Reinecke committed
429
        rho=pdomain.rho
430
431
432
433
434
435
436
437
        if axes is not None:
            new_rho_shape = [1, ] * len(power_spectrum.shape)
            new_rho_shape[axes[0]] = len(rho)
            rho = rho.reshape(new_rho_shape)
        power_spectrum /= rho

        return power_spectrum

438
439
    @staticmethod
    def _shape_up_pindex(pindex, target_shape, target_strategy, axes):
440
441
        if pindex.distribution_strategy not in \
                DISTRIBUTION_STRATEGIES['global']:
442
            raise ValueError("pindex's distribution strategy must be "
443
444
445
446
447
448
                             "global-type")

        if pindex.distribution_strategy in DISTRIBUTION_STRATEGIES['slicing']:
            if ((0 not in axes) or
                    (target_strategy is not pindex.distribution_strategy)):
                raise ValueError(
449
                    "A slicing distributor shall not be reshaped to "
450
451
452
453
454
455
456
457
458
459
460
461
462
                    "something non-sliced.")

        semiscaled_shape = [1, ] * len(target_shape)
        for i in axes:
            semiscaled_shape[i] = target_shape[i]
        local_data = pindex.get_local_data(copy=False)
        semiscaled_local_data = local_data.reshape(semiscaled_shape)
        result_obj = pindex.copy_empty(global_shape=target_shape,
                                       distribution_strategy=target_strategy)
        result_obj.set_full_data(semiscaled_local_data, copy=False)

        return result_obj

463
464
    def power_synthesize(self, spaces=None, real_power=True, real_signal=True,
                         mean=None, std=None):
Theo Steininger's avatar
Theo Steininger committed
465
        """ Yields a sampled field with `self`**2 as its power spectrum.
Theo Steininger's avatar
Theo Steininger committed
466

Theo Steininger's avatar
Theo Steininger committed
467
468
        This method draws a Gaussian random field in the harmonic partner
        domain of this fields domains, using this field as power spectrum.
Theo Steininger's avatar
Theo Steininger committed
469

470
471
472
        Parameters
        ----------
        spaces : {tuple, int, None} *optional*
Theo Steininger's avatar
Theo Steininger committed
473
474
475
            Specifies the subspace containing all the PowerSpaces which
            should be converted (default : None).
            if spaces==None : Tries to convert the whole domain.
476
        real_power : boolean *optional*
Theo Steininger's avatar
Theo Steininger committed
477
478
            Determines whether the power spectrum is treated as intrinsically
            real or complex (default : True).
479
        real_signal : boolean *optional*
Theo Steininger's avatar
Theo Steininger committed
480
481
482
483
484
485
            True will result in a purely real signal-space field
            (default : True).
        mean : float *optional*
            The mean of the Gaussian noise field which is used for the Field
            synthetization (default : None).
            if mean==None : mean will be set to 0
486
        std : float *optional*
Theo Steininger's avatar
Theo Steininger committed
487
488
489
            The standard deviation of the Gaussian noise field which is used
            for the Field synthetization (default : None).
            if std==None : std will be set to 1
Theo Steininger's avatar
Theo Steininger committed
490

491
492
493
494
        Returns
        -------
        out : Field
            The output object. A random field created with the power spectrum
Theo Steininger's avatar
Theo Steininger committed
495
            stored in the `spaces` in `self`.
496

Theo Steininger's avatar
Theo Steininger committed
497
498
499
500
501
502
        Notes
        -----
        For this the spaces specified by `spaces` must be a PowerSpace.
        This expects this field to be the square root of a power spectrum, i.e.
        to have the unit of the field to be sampled.

503
504
505
        See Also
        --------
        power_analyze
Theo Steininger's avatar
Theo Steininger committed
506
507
508
509
510

        Raises
        ------
        ValueError : If domain specified by `spaces` is not a PowerSpace.

511
        """
Theo Steininger's avatar
Theo Steininger committed
512

513
514
515
        # check if the `spaces` input is valid
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))

Theo Steininger's avatar
Theo Steininger committed
516
517
518
        if spaces is None:
            spaces = range(len(self.domain))

519
520
521
522
523
        for power_space_index in spaces:
            power_space = self.domain[power_space_index]
            if not isinstance(power_space, PowerSpace):
                raise ValueError("A PowerSpace is needed for field "
                                 "synthetization.")
524
525
526

        # create the result domain
        result_domain = list(self.domain)
527
528
        for power_space_index in spaces:
            power_space = self.domain[power_space_index]
529
            harmonic_domain = power_space.harmonic_partner
530
            result_domain[power_space_index] = harmonic_domain
531
532
533

        # create random samples: one or two, depending on whether the
        # power spectrum is real or complex
534
        if real_power:
535
            result_list = [None]
536
537
        else:
            result_list = [None, None]
538

539
540
        result_list = [self.__class__.from_random(
                             'normal',
541
542
543
                             mean=mean,
                             std=std,
                             domain=result_domain,
544
                             dtype=np.complex,
545
                             distribution_strategy=self.distribution_strategy)
546
547
548
549
550
551
                       for x in result_list]

        # from now on extract the values from the random fields for further
        # processing without killing the fields.
        # if the signal-space field should be real, hermitianize the field
        # components
552
553

        spec = self.val.get_full_data()
554
555
        spec = np.sqrt(spec)

556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
        for power_space_index in spaces:
            spec = self._spec_to_rescaler(spec, result_list, power_space_index)
        local_rescaler = spec

        result_val_list = [x.val for x in result_list]

        # apply the rescaler to the random fields
        result_val_list[0].apply_scalar_function(
                                            lambda x: x * local_rescaler.real,
                                            inplace=True)

        if not real_power:
            result_val_list[1].apply_scalar_function(
                                            lambda x: x * local_rescaler.imag,
                                            inplace=True)

572
        if real_signal:
573
            result_val_list = [self._hermitian_decomposition(
574
575
576
577
578
                                            result_domain,
                                            result_val,
                                            spaces,
                                            result_list[0].domain_axes,
                                            preserve_gaussian_variance=True)[0]
579
                               for result_val in result_val_list]
580
581
582
583
584
585
586

        # store the result into the fields
        [x.set_val(new_val=y, copy=False) for x, y in
            zip(result_list, result_val_list)]

        if real_power:
            result = result_list[0]
587
        else:
588
589
590
591
            result = result_list[0] + 1j*result_list[1]

        return result

592
    @staticmethod
593
594
    def _hermitian_decomposition(domain, val, spaces, domain_axes,
                                 preserve_gaussian_variance=False):
595
596
        # hermitianize for the first space
        (h, a) = domain[spaces[0]].hermitian_decomposition(
597
598
599
                       val,
                       domain_axes[spaces[0]],
                       preserve_gaussian_variance=preserve_gaussian_variance)
600
601
        # hermitianize all remaining spaces using the iterative formula
        for space in xrange(1, len(spaces)):
602
603
604
            (hh, ha) = domain[space].hermitian_decomposition(
                                              h,
                                              domain_axes[space],
605
                                              preserve_gaussian_variance=False)
606
607
608
            (ah, aa) = domain[space].hermitian_decomposition(
                                              a,
                                              domain_axes[space],
609
                                              preserve_gaussian_variance=False)
610
            c = (hh - ha - ah + aa).conjugate()
611
612
613
            full = (hh + ha + ah + aa)
            h = (full + c)/2.
            a = (full - c)/2.
614
615

        # correct variance
616

617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
        # in principle one must not correct the variance for the fixed
        # points of the hermitianization. However, for a complex field
        # the input field loses half of its power at its fixed points
        # in the `hermitian` part. Hence, here a factor of sqrt(2) is
        # also necessary!
        # => The hermitianization can be done on a space level since either
        # nothing must be done (LMSpace) or ALL points need a factor of sqrt(2)
        # => use the preserve_gaussian_variance flag in the
        # hermitian_decomposition method above.

        # This code is for educational purposes:
#        fixed_points = [domain[i].hermitian_fixed_points() for i in spaces]
#        # check if there was at least one flipping during hermitianization
#        flipped_Q = np.any([fp is not None for fp in fixed_points])
#        # if the array got flipped, correct the variance
#        if flipped_Q:
#            h *= np.sqrt(2)
#            a *= np.sqrt(2)
#
636
637
638
639
640
641
642
643
644
645
646
647
648
#            fixed_points = [[fp] if fp is None else fp for fp in fixed_points]
#            for product_point in itertools.product(*fixed_points):
#                slice_object = np.array((slice(None), )*len(val.shape),
#                                        dtype=np.object)
#                for i, sp in enumerate(spaces):
#                    point_component = product_point[i]
#                    if point_component is None:
#                        point_component = slice(None)
#                    slice_object[list(domain_axes[sp])] = point_component
#
#                slice_object = tuple(slice_object)
#                h[slice_object] /= np.sqrt(2)
#                a[slice_object] /= np.sqrt(2)
649
650
651

        return (h, a)

652
653
    def _spec_to_rescaler(self, spec, result_list, power_space_index):
        power_space = self.domain[power_space_index]
654
655
656

        # weight the random fields with the power spectrum
        # therefore get the pindex from the power space
657
        pindex = power_space.pindex
658
659
660
661
662
663
664
        # take the local data from pindex. This data must be compatible to the
        # local data of the field given the slice of the PowerSpace
        local_distribution_strategy = \
            result_list[0].val.get_axes_local_distribution_strategy(
                result_list[0].domain_axes[power_space_index])

        if pindex.distribution_strategy is not local_distribution_strategy:
665
            self.logger.warn(
666
                "The distribution_stragey of pindex does not fit the "
667
668
669
670
671
672
673
674
675
676
                "slice_local distribution strategy of the synthesized field.")

        # Now use numpy advanced indexing in order to put the entries of the
        # power spectrum into the appropriate places of the pindex array.
        # Do this for every 'pindex-slice' in parallel using the 'slice(None)'s
        local_pindex = pindex.get_local_data(copy=False)

        local_blow_up = [slice(None)]*len(self.shape)
        local_blow_up[self.domain_axes[power_space_index][0]] = local_pindex
        # here, the power_spectrum is distributed into the new shape
677
678
        local_rescaler = spec[local_blow_up]
        return local_rescaler
679

theos's avatar
theos committed
680
    # ---Properties---
681

theos's avatar
theos committed
682
    def set_val(self, new_val=None, copy=False):
Theo Steininger's avatar
Theo Steininger committed
683
        """ Sets the fields distributed_data_object.
684
685
686

        Parameters
        ----------
Theo Steininger's avatar
Theo Steininger committed
687
        new_val : scalar, array-like, Field, None *optional*
688
689
            The values to be stored in the field.
            {default : None}
Theo Steininger's avatar
Theo Steininger committed
690

691
        copy : boolean, *optional*
Theo Steininger's avatar
Theo Steininger committed
692
693
            If False, Field tries to not copy the input data but use it
            directly.
694
695
696
697
698
699
            {default : False}
        See Also
        --------
        val

        """
Theo Steininger's avatar
Theo Steininger committed
700

701
702
        new_val = self.cast(new_val)
        if copy:
theos's avatar
theos committed
703
704
            new_val = new_val.copy()
        self._val = new_val
theos's avatar
theos committed
705
        return self
csongor's avatar
csongor committed
706

707
    def get_val(self, copy=False):
Theo Steininger's avatar
Theo Steininger committed
708
        """ Returns the distributed_data_object associated with this Field.
709
710
711
712

        Parameters
        ----------
        copy : boolean
Theo Steininger's avatar
Theo Steininger committed
713
714
            If true, a copy of the Field's underlying distributed_data_object
            is returned.
Theo Steininger's avatar
Theo Steininger committed
715

716
717
718
719
720
721
722
723
724
        Returns
        -------
        out : distributed_data_object

        See Also
        --------
        val

        """
Theo Steininger's avatar
Theo Steininger committed
725

726
727
728
        if self._val is None:
            self.set_val(None)

729
        if copy:
theos's avatar
theos committed
730
            return self._val.copy()
731
        else:
theos's avatar
theos committed
732
            return self._val
csongor's avatar
csongor committed
733

theos's avatar
theos committed
734
735
    @property
    def val(self):
Theo Steininger's avatar
Theo Steininger committed
736
        """ Returns the distributed_data_object associated with this Field.
Theo Steininger's avatar
Theo Steininger committed
737

738
739
740
741
742
743
744
745
746
        Returns
        -------
        out : distributed_data_object

        See Also
        --------
        get_val

        """
Theo Steininger's avatar
Theo Steininger committed
747

748
        return self.get_val(copy=False)
csongor's avatar
csongor committed
749

theos's avatar
theos committed
750
751
    @val.setter
    def val(self, new_val):
752
        self.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
753

754
755
    @property
    def shape(self):
Theo Steininger's avatar
Theo Steininger committed
756
        """ Returns the total shape of the Field's data array.
Theo Steininger's avatar
Theo Steininger committed
757

758
759
760
761
762
763
764
765
766
767
768
        Returns
        -------
        out : tuple
            The output object. The tuple contains the dimansions of the spaces
            in domain.

        See Also
        --------
        dim

        """
Theo Steininger's avatar
Theo Steininger committed
769

770
        shape_tuple = tuple(sp.shape for sp in self.domain)
771
772
773
774
        try:
            global_shape = reduce(lambda x, y: x + y, shape_tuple)
        except TypeError:
            global_shape = ()
csongor's avatar
csongor committed
775

776
        return global_shape
csongor's avatar
csongor committed
777

778
779
    @property
    def dim(self):
Theo Steininger's avatar
Theo Steininger committed
780
        """ Returns the total number of pixel-dimensions the field has.
Theo Steininger's avatar
Theo Steininger committed
781

Theo Steininger's avatar
Theo Steininger committed
782
        Effectively, all values from shape are multiplied.
Theo Steininger's avatar
Theo Steininger committed
783

784
785
786
787
788
789
790
791
792
793
        Returns
        -------
        out : int
            The dimension of the Field.

        See Also
        --------
        shape

        """
Theo Steininger's avatar
Theo Steininger committed
794

795
        dim_tuple = tuple(sp.dim for sp in self.domain)
theos's avatar
theos committed
796
797
798
799
        try:
            return reduce(lambda x, y: x * y, dim_tuple)
        except TypeError:
            return 0
csongor's avatar
csongor committed
800

801
802
    @property
    def dof(self):
Theo Steininger's avatar
Theo Steininger committed
803
804
805
806
807
808
        """ Returns the total number of degrees of freedom the Field has. For
        real Fields this is equal to `self.dim`. For complex Fields it is
        2*`self.dim`.

        """

theos's avatar
theos committed
809
810
811
812
813
814
815
        dof = self.dim
        if issubclass(self.dtype.type, np.complexfloating):
            dof *= 2
        return dof

    @property
    def total_volume(self):
Theo Steininger's avatar
Theo Steininger committed
816
817
818
        """ Returns the total volume of all spaces in the domain.
        """

theos's avatar
theos committed
819
        volume_tuple = tuple(sp.total_volume for sp in self.domain)
820
        try:
theos's avatar
theos committed
821
            return reduce(lambda x, y: x * y, volume_tuple)
822
        except TypeError:
Theo Steininger's avatar
Theo Steininger committed
823
            return 0.
824

theos's avatar
theos committed
825
    # ---Special unary/binary operations---
826

csongor's avatar
csongor committed
827
    def cast(self, x=None, dtype=None):
Theo Steininger's avatar
Theo Steininger committed
828
        """ Transforms x to a d2o with the correct dtype and shape.
Theo Steininger's avatar
Theo Steininger committed
829

830
831
        Parameters
        ----------
Theo Steininger's avatar
Theo Steininger committed
832
        x : scalar, d2o, Field, array_like
833
834
            The input that shall be casted on a d2o of the same shape like the
            domain.
Theo Steininger's avatar
Theo Steininger committed
835

836
        dtype : type
Theo Steininger's avatar
Theo Steininger committed
837
838
            The datatype the output shall have. This can be used to override
            the fields dtype.
Theo Steininger's avatar
Theo Steininger committed
839

840
841
842
843
844
845
846
847
848
849
        Returns
        -------
        out : distributed_data_object
            The output object.

        See Also
        --------
        _actual_cast

        """
csongor's avatar
csongor committed
850
851
        if dtype is None:
            dtype = self.dtype
852
853
        else:
            dtype = np.dtype(dtype)
854

855
856
        casted_x = x

857
        for ind, sp in enumerate(self.domain):
858
            casted_x = sp.pre_cast(casted_x,
859
860
861
                                   axes=self.domain_axes[ind])

        casted_x = self._actual_cast(casted_x, dtype=dtype)
862
863

        for ind, sp in enumerate(self.domain):
864
865
            casted_x = sp.post_cast(casted_x,
                                    axes=self.domain_axes[ind])
866

867
        return casted_x
csongor's avatar
csongor committed
868

theos's avatar
theos committed
869
    def _actual_cast(self, x, dtype=None):
870
        if isinstance(x, Field):
csongor's avatar
csongor committed
871
872
873
874
875
            x = x.get_val()

        if dtype is None:
            dtype = self.dtype

876
        return_x = distributed_data_object(
877
878
879
                            global_shape=self.shape,
                            dtype=dtype,
                            distribution_strategy=self.distribution_strategy)
880
881
        return_x.set_full_data(x, copy=False)
        return return_x
theos's avatar
theos committed
882

883
    def copy(self, domain=None, dtype=None, distribution_strategy=None):
884
        """ Returns a full copy of the Field.
Theo Steininger's avatar
Theo Steininger committed
885

886
887
888
889
890
891
892
893
894
        If no keyword arguments are given, the returned object will be an
        identical copy of the original Field. By explicit specification one is
        able to define the domain, the dtype and the distribution_strategy of
        the returned Field.

        Parameters
        ----------
        domain : DomainObject
            The new domain the Field shall have.
Theo Steininger's avatar
Theo Steininger committed
895

896
897
        dtype : type
            The new dtype the Field shall have.
Theo Steininger's avatar
Theo Steininger committed
898

899
        distribution_strategy : all supported distribution strategies
Theo Steininger's avatar
Theo Steininger committed
900
901
            The new distribution strategy the Field shall have.

902
903
904
905
906
907
908
909
910
911
        Returns
        -------
        out : Field
            The output object. An identical copy of 'self'.

        See Also
        --------
        copy_empty

        """
Theo Steininger's avatar
Theo Steininger committed
912

theos's avatar
theos committed
913
        copied_val = self.get_val(copy=True)
914
915
916
917
        new_field = self.copy_empty(
                                domain=domain,
                                dtype=dtype,
                                distribution_strategy=distribution_strategy)
theos's avatar
theos committed
918
919
        new_field.set_val(new_val=copied_val, copy=False)
        return new_field
csongor's avatar
csongor committed
920

921
    def copy_empty(self, domain=None, dtype=None, distribution_strategy=None):
922
923
924
        """ Returns an empty copy of the Field.

        If no keyword arguments are given, the returned object will be an
Theo Steininger's avatar
Theo Steininger committed
925
926
927
928
929
        identical copy of the original Field. The memory for the data array
        is only allocated but not actively set to any value
        (c.f. numpy.ndarray.copy_empty). By explicit specification one is able
        to change the domain, the dtype and the distribution_strategy of the
        returned Field.
Theo Steininger's avatar
Theo Steininger committed
930

931
932
933
934
        Parameters
        ----------
        domain : DomainObject
            The new domain the Field shall have.
Theo Steininger's avatar
Theo Steininger committed
935

936
937
        dtype : type
            The new dtype the Field shall have.
Theo Steininger's avatar
Theo Steininger committed
938

Theo Steininger's avatar
Theo Steininger committed
939
        distribution_strategy : string, all supported distribution strategies
940
            The distribution strategy the new Field should have.
Theo Steininger's avatar
Theo Steininger committed
941

942
943
944
        Returns
        -------
        out : Field
Theo Steininger's avatar
Theo Steininger committed
945
            The output object.
946
947
948
949
950
951

        See Also
        --------
        copy

        """
Theo Steininger's avatar
Theo Steininger committed
952

theos's avatar
theos committed
953
954
        if domain is None:
            domain = self.domain
csongor's avatar
csongor committed
955
        else:
theos's avatar
theos committed
956
            domain = self._parse_domain(domain)
csongor's avatar
csongor committed
957

theos's avatar
theos committed
958
959
960
961
        if dtype is None:
            dtype = self.dtype
        else:
            dtype = np.dtype(dtype)
csongor's avatar
csongor committed
962

963
964
        if distribution_strategy is None:
            distribution_strategy = self.distribution_strategy
csongor's avatar
csongor committed
965

theos's avatar
theos committed
966
967
968
969
970
971
972
973
974
975
        fast_copyable = True
        try:
            for i in xrange(len(self.domain)):
                if self.domain[i] is not domain[i]:
                    fast_copyable = False
                    break
        except IndexError:
            fast_copyable = False

        if (fast_copyable and dtype == self.dtype and
976
                distribution_strategy == self.distribution_strategy):
theos's avatar
theos committed
977
978
979
980
            new_field = self._fast_copy_empty()
        else:
            new_field = Field(domain=domain,
                              dtype=dtype,
981
                              distribution_strategy=distribution_strategy)
theos's avatar
theos committed
982
        return new_field
csongor's avatar
csongor committed
983

theos's avatar
theos committed
984
985
986
987
988
989
990
    def _fast_copy_empty(self):
        # make an empty field
        new_field = EmptyField()
        # repair its class
        new_field.__class__ = self.__class__
        # copy domain, codomain and val
        for key, value in self.__dict__.items():
991
            if key != '_val':
theos's avatar
theos committed
992
993
994
995
996
997
                new_field.__dict__[key] = value
            else:
                new_field.__dict__[key] = self.val.copy_empty()
        return new_field

    def weight(self, power=1, inplace=False, spaces=None):
Theo Steininger's avatar
Theo Steininger committed
998
        """ Weights the pixels of `self` with their invidual pixel-volume.
999
1000
1001
1002

        Parameters
        ----------
        power : number
Theo Steininger's avatar
Theo Steininger committed
1003
            The pixels get weighted with the volume-factor**power.
Theo Steininger's avatar
Theo Steininger committed
1004

1005
        inplace : boolean
Theo Steininger's avatar
Theo Steininger committed
1006
1007
            If True, `self` will be weighted and returned. Otherwise, a copy
            is made.
Theo Steininger's avatar
Theo Steininger committed
1008

Theo Steininger's avatar
Theo Steininger committed
1009
1010
        spaces : tuple of ints
            Determines on which subspace the operation takes place.
Theo Steininger's avatar
Theo Steininger committed
1011

1012
1013
1014
        Returns
        -------
        out : Field
Theo Steininger's avatar
Theo Steininger committed
1015
            The weighted field.
1016
1017

        """
1018
        if inplace:
csongor's avatar
csongor committed
1019
1020
1021
1022
            new_field = self
        else:
            new_field = self.copy_empty()

1023
        new_val = self.get_val(copy=False)
csongor's avatar
csongor committed
1024

1025
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
csongor's avatar
csongor committed
1026
        if spaces is None:
theos's avatar
theos committed
1027
            spaces = range(len(