test_map.py 12.5 KB
Newer Older
Philipp Arras's avatar
Philipp Arras committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.

import unittest
import nifty4 as ift
import numpy as np
from itertools import product
from test.common import expand
from numpy.testing import assert_allclose


# TODO Add also other space types
28
# TODO Set tolerances and eps to reasonable values
Philipp Arras's avatar
Philipp Arras committed
29
30


31
class Energy_Tests(unittest.TestCase):
Philipp Arras's avatar
Philipp Arras committed
32
    @expand(product([ift.RGSpace(64, distances=.789),
33
34
35
36
                     ift.RGSpace([32, 32], distances=.789)],
                    [4, 78, 23]))
    def testLinearMap(self, space, seed):
        np.random.seed(seed)
Philipp Arras's avatar
Philipp Arras committed
37
        dim = len(space.shape)
38
39
        hspace = space.get_default_codomain()
        ht = ift.HarmonicTransformOperator(hspace, target=space)
Philipp Arras's avatar
Philipp Arras committed
40
41
42
43
44
45
46
47
48
        binbounds = ift.PowerSpace.useful_binbounds(hspace, logarithmic=False)
        pspace = ift.PowerSpace(hspace, binbounds=binbounds)
        P = ift.PowerProjectionOperator(domain=hspace, power_space=pspace)
        xi0 = ift.Field.from_random(domain=hspace, random_type='normal')

        def pspec(k): return 1 / (1 + k**2)**dim
        pspec = ift.PS_field(pspace, pspec)
        A = P.adjoint_times(ift.sqrt(pspec))
        n = ift.Field.from_random(domain=space, random_type='normal')
49
        s0 = xi0 * A
Philipp Arras's avatar
Philipp Arras committed
50
        diag = ift.Field.ones(space) * 10
51
52
        Instrument = ift.DiagonalOperator(diag)
        R = Instrument * ht
Philipp Arras's avatar
Philipp Arras committed
53
54
        diag = ift.Field.ones(space)
        N = ift.DiagonalOperator(diag)
55
        d = R(s0) + n
Philipp Arras's avatar
Philipp Arras committed
56
57
58

        direction = ift.Field.from_random('normal', hspace)
        direction /= np.sqrt(direction.var())
59
        eps = 1e-7
60
61
62
63
64
65
66
67
        s1 = s0 + eps * direction

        IC = ift.GradientNormController(
            name='IC',
            verbose=False,
            iteration_limit=100,
            tol_abs_gradnorm=1e-5)
        inverter = ift.ConjugateGradient(IC)
Philipp Arras's avatar
Philipp Arras committed
68
69

        S = ift.create_power_operator(hspace, power_spectrum=lambda k: 1.)
70
71
72
73
        energy0 = ift.library.WienerFilterEnergy(
            position=s0, d=d, R=R, N=N, S=S, inverter=inverter)
        energy1 = ift.library.WienerFilterEnergy(
            position=s1, d=d, R=R, N=N, S=S, inverter=inverter)
Philipp Arras's avatar
Philipp Arras committed
74
75
76

        a = (energy1.value - energy0.value) / eps
        b = energy0.gradient.vdot(direction)
77
        tol = 1e-5
Philipp Arras's avatar
Philipp Arras committed
78
79
80
        assert_allclose(a, b, rtol=tol, atol=tol)

    @expand(product([ift.RGSpace(64, distances=.789),
81
82
83
84
                     ift.RGSpace([32, 32], distances=.789)],
                     [4, 78, 23]))
    def testLognormalMap(self, space, seed):
        np.random.seed(seed)
Philipp Arras's avatar
Philipp Arras committed
85
86
87
88
89
90
91
92
93
94
95
96
        dim = len(space.shape)
        hspace = space.get_default_codomain()
        ht = ift.HarmonicTransformOperator(hspace, target=space)
        binbounds = ift.PowerSpace.useful_binbounds(hspace, logarithmic=False)
        pspace = ift.PowerSpace(hspace, binbounds=binbounds)
        P = ift.PowerProjectionOperator(domain=hspace, power_space=pspace)
        xi0 = ift.Field.from_random(domain=hspace, random_type='normal')

        def pspec(k): return 1 / (1 + k**2)**dim
        pspec = ift.PS_field(pspace, pspec)
        A = P.adjoint_times(ift.sqrt(pspec))
        n = ift.Field.from_random(domain=space, random_type='normal')
97
98
        sh0 = xi0 * A
        s = ht(sh0)
Philipp Arras's avatar
Philipp Arras committed
99
100
101
102
103
        diag = ift.Field.ones(space) * 10
        Instrument = ift.DiagonalOperator(diag)
        R = Instrument * ht
        diag = ift.Field.ones(space)
        N = ift.DiagonalOperator(diag)
104
        d = Instrument(ift.exp(s)) + n
Philipp Arras's avatar
Philipp Arras committed
105
106
107

        direction = ift.Field.from_random('normal', hspace)
        direction /= np.sqrt(direction.var())
108
        eps = 1e-6
109
        sh1 = sh0 + eps * direction
Philipp Arras's avatar
Philipp Arras committed
110
111
112
113
114
115
116
117
118

        IC = ift.GradientNormController(
            name='IC',
            verbose=False,
            iteration_limit=100,
            tol_abs_gradnorm=1e-5)
        inverter = ift.ConjugateGradient(IC)

        S = ift.create_power_operator(hspace, power_spectrum=lambda k: 1.)
119
120
121
122
        energy0 = ift.library.LogNormalWienerFilterEnergy(
            position=sh0, d=d, R=R, N=N, S=S, inverter=inverter)
        energy1 = ift.library.LogNormalWienerFilterEnergy(
            position=sh1, d=d, R=R, N=N, S=S, inverter=inverter)
Philipp Arras's avatar
Philipp Arras committed
123
124
125

        a = (energy1.value - energy0.value) / eps
        b = energy0.gradient.vdot(direction)
126
        tol = 1e-3
127
128
129
130
        assert_allclose(a, b, rtol=tol, atol=tol)

    @expand(product([ift.RGSpace(64, distances=.789),
                     ift.RGSpace([32, 32], distances=.789)],
131
132
133
134
                    [ift.library.Exponential, ift.library.Linear],
                     [4, 78, 23]))
    def testNonlinearMap(self, space, nonlinearity, seed):
        np.random.seed(seed)
135
136
        f = nonlinearity()
        dim = len(space.shape)
137
138
        hspace = space.get_default_codomain()
        ht = ift.HarmonicTransformOperator(hspace, target=space)
139
140
141
142
143
144
145
146
147
        binbounds = ift.PowerSpace.useful_binbounds(hspace, logarithmic=False)
        pspace = ift.PowerSpace(hspace, binbounds=binbounds)
        P = ift.PowerProjectionOperator(domain=hspace, power_space=pspace)
        xi0 = ift.Field.from_random(domain=hspace, random_type='normal')

        def pspec(k): return 1 / (1 + k**2)**dim
        pspec = ift.PS_field(pspace, pspec)
        A = P.adjoint_times(ift.sqrt(pspec))
        n = ift.Field.from_random(domain=space, random_type='normal')
148
        s = ht(xi0 * A)
149
150
151
152
153
154
155
156
        diag = ift.Field.ones(space) * 10
        R = ift.DiagonalOperator(diag)
        diag = ift.Field.ones(space)
        N = ift.DiagonalOperator(diag)
        d = R(f(s)) + n

        direction = ift.Field.from_random('normal', hspace)
        direction /= np.sqrt(direction.var())
157
        eps = 1e-7
158
159
160
161
        xi1 = xi0 + eps * direction

        S = ift.create_power_operator(hspace, power_spectrum=lambda k: 1.)
        energy0 = ift.library.NonlinearWienerFilterEnergy(
162
            position=xi0, d=d, Instrument=R, nonlinearity=f, ht=ht, power=A, N=N, S=S)
163
        energy1 = ift.library.NonlinearWienerFilterEnergy(
164
            position=xi1, d=d, Instrument=R, nonlinearity=f, ht=ht, power=A, N=N, S=S)
165
166
167

        a = (energy1.value - energy0.value) / eps
        b = energy0.gradient.vdot(direction)
168
        tol = 1e-4
Philipp Arras's avatar
Philipp Arras committed
169
        assert_allclose(a, b, rtol=tol, atol=tol)
Philipp Arras's avatar
Philipp Arras committed
170

171
172

class Curvature_Tests(unittest.TestCase):
Philipp Arras's avatar
Philipp Arras committed
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
    @expand(product([ift.RGSpace(64, distances=.789),
                     ift.RGSpace([32, 32], distances=.789)],
                    [4, 78, 23]))
    def testLinearMapCurvature(self, space, seed):
        np.random.seed(seed)
        dim = len(space.shape)
        hspace = space.get_default_codomain()
        ht = ift.HarmonicTransformOperator(hspace, target=space)
        binbounds = ift.PowerSpace.useful_binbounds(hspace, logarithmic=False)
        pspace = ift.PowerSpace(hspace, binbounds=binbounds)
        P = ift.PowerProjectionOperator(domain=hspace, power_space=pspace)
        xi0 = ift.Field.from_random(domain=hspace, random_type='normal')

        def pspec(k): return 1 / (1 + k**2)**dim
        pspec = ift.PS_field(pspace, pspec)
        A = P.adjoint_times(ift.sqrt(pspec))
        n = ift.Field.from_random(domain=space, random_type='normal')
        s0 = xi0 * A
        diag = ift.Field.ones(space) * 10
        Instrument = ift.DiagonalOperator(diag)
        R = Instrument * ht
        diag = ift.Field.ones(space)
        N = ift.DiagonalOperator(diag)
        d = R(s0) + n

        direction = ift.Field.from_random('normal', hspace)
        direction /= np.sqrt(direction.var())
        eps = 1e-7
        s1 = s0 + eps * direction

        IC = ift.GradientNormController(
            name='IC',
            verbose=False,
            iteration_limit=100,
            tol_abs_gradnorm=1e-5)
        inverter = ift.ConjugateGradient(IC)

        S = ift.create_power_operator(hspace, power_spectrum=lambda k: 1.)
        energy0 = ift.library.WienerFilterEnergy(position=s0, d=d, R=R, N=N, S=S, inverter=inverter)
        gradient0 = energy0.gradient
        gradient1 = energy0.at(s1).gradient

        a = (gradient1 - gradient0) / eps
        b = energy0.curvature(direction)
        tol = 1e-7
        assert_allclose(a.val, b.val, rtol=tol, atol=tol)

    @expand(product([ift.RGSpace(64, distances=.789),
                     ift.RGSpace([32, 32], distances=.789)],
                     [4, 78, 23]))
    def testLognormalMapCurvature(self, space, seed):
        np.random.seed(seed)
        dim = len(space.shape)
        hspace = space.get_default_codomain()
        ht = ift.HarmonicTransformOperator(hspace, target=space)
        binbounds = ift.PowerSpace.useful_binbounds(hspace, logarithmic=False)
        pspace = ift.PowerSpace(hspace, binbounds=binbounds)
        P = ift.PowerProjectionOperator(domain=hspace, power_space=pspace)
        xi0 = ift.Field.from_random(domain=hspace, random_type='normal')

        def pspec(k): return 1 / (1 + k**2)**dim
        pspec = ift.PS_field(pspace, pspec)
        A = P.adjoint_times(ift.sqrt(pspec))
        n = ift.Field.from_random(domain=space, random_type='normal')
        sh0 = xi0 * A
        s = ht(sh0)
        diag = ift.Field.ones(space) * 10
        Instrument = ift.DiagonalOperator(diag)
        R = Instrument * ht
        diag = ift.Field.ones(space)
        N = ift.DiagonalOperator(diag)
        d = Instrument(ift.exp(s)) + n

        direction = ift.Field.from_random('normal', hspace)
        direction /= np.sqrt(direction.var())
        eps = 1e-7
        sh1 = sh0 + eps * direction

        IC = ift.GradientNormController(
            name='IC',
            verbose=False,
            iteration_limit=100,
            tol_abs_gradnorm=1e-5)
        inverter = ift.ConjugateGradient(IC)

        S = ift.create_power_operator(hspace, power_spectrum=lambda k: 1.)

        energy0 = ift.library.LogNormalWienerFilterEnergy(
            position=sh0, d=d, R=R, N=N, S=S, inverter=inverter)
        gradient0 = energy0.gradient
        gradient1 = energy0.at(sh1).gradient

        a = (gradient1 - gradient0) / eps
        b = energy0.curvature(direction)
        tol = 1e-3
        assert_allclose(a.val, b.val, rtol=tol, atol=tol)

    @expand(product([ift.RGSpace(64, distances=.789),
                     ift.RGSpace([32, 32], distances=.789)],
                    [ift.library.Exponential, ift.library.Linear],
                     [4, 78, 23]))
    def testNonlinearMapCurvature(self, space, nonlinearity, seed):
        np.random.seed(seed)
        f = nonlinearity()
        dim = len(space.shape)
        hspace = space.get_default_codomain()
        ht = ift.HarmonicTransformOperator(hspace, target=space)
        binbounds = ift.PowerSpace.useful_binbounds(hspace, logarithmic=False)
        pspace = ift.PowerSpace(hspace, binbounds=binbounds)
        P = ift.PowerProjectionOperator(domain=hspace, power_space=pspace)
        xi0 = ift.Field.from_random(domain=hspace, random_type='normal')

        def pspec(k): return 1 / (1 + k**2)**dim
        pspec = ift.PS_field(pspace, pspec)
        A = P.adjoint_times(ift.sqrt(pspec))
        n = ift.Field.from_random(domain=space, random_type='normal')
        s = ht(xi0 * A)
        diag = ift.Field.ones(space) * 10
        R = ift.DiagonalOperator(diag)
        diag = ift.Field.ones(space)
        N = ift.DiagonalOperator(diag)
        d = R(f(s)) + n

        direction = ift.Field.from_random('normal', hspace)
        direction /= np.sqrt(direction.var())
        eps = 1e-7
        xi1 = xi0 + eps * direction

        S = ift.create_power_operator(hspace, power_spectrum=lambda k: 1.)

        IC = ift.GradientNormController(
            name='IC',
            verbose=False,
            iteration_limit=500,
            tol_abs_gradnorm=1e-7)
        inverter = ift.ConjugateGradient(IC)
        energy0 = ift.library.NonlinearWienerFilterEnergy(
            position=xi0, d=d, Instrument=R, nonlinearity=f, ht=ht, power=A, N=N, S=S, inverter=inverter)
        gradient0 = energy0.gradient
        gradient1 = energy0.at(xi1).gradient

        a = (gradient1 - gradient0) / eps
        b = energy0.curvature(direction)
Philipp Arras's avatar
Philipp Arras committed
316
        tol = 1e-3
Philipp Arras's avatar
Philipp Arras committed
317
        assert_allclose(a.val, b.val, rtol=tol, atol=tol)