field.py 24.5 KB
Newer Older
csongor's avatar
csongor committed
1
2
3
from __future__ import division
import numpy as np

4
from d2o import distributed_data_object,\
5
    STRATEGIES as DISTRIBUTION_STRATEGIES
csongor's avatar
csongor committed
6

7
8
9
from nifty.config import about,\
                         nifty_configuration as gc,\
                         dependency_injector as gdi
csongor's avatar
csongor committed
10

11
from nifty.field_types import FieldType
12

13
from nifty.spaces.space import Space
14
from nifty.spaces.power_space import PowerSpace
csongor's avatar
csongor committed
15

csongor's avatar
csongor committed
16
import nifty.nifty_utilities as utilities
17
18
from nifty.random import Random

csongor's avatar
csongor committed
19
20

POINT_DISTRIBUTION_STRATEGIES = DISTRIBUTION_STRATEGIES['global']
theos's avatar
theos committed
21
COMM = getattr(gdi[gc['mpi_module']], gc['default_comm'])
csongor's avatar
csongor committed
22
23


24
class Field(object):
theos's avatar
theos committed
25
    # ---Initialization methods---
26

theos's avatar
theos committed
27
28
    def __init__(self, domain=None, val=None, dtype=None, field_type=None,
                 datamodel=None, copy=False):
csongor's avatar
csongor committed
29

30
        self.domain = self._parse_domain(domain=domain, val=val)
31
        self.domain_axes = self._get_axes_tuple(self.domain)
csongor's avatar
csongor committed
32

33
        self.field_type = self._parse_field_type(field_type, val=val)
34

theos's avatar
theos committed
35
36
37
38
39
40
        try:
            start = len(reduce(lambda x, y: x+y, self.domain_axes))
        except TypeError:
            start = 0
        self.field_type_axes = self._get_axes_tuple(self.field_type,
                                                    start=start)
41

theos's avatar
theos committed
42
        self.dtype = self._infer_dtype(dtype=dtype,
Jait Dixit's avatar
Jait Dixit committed
43
                                       val=val,
theos's avatar
theos committed
44
45
                                       domain=self.domain,
                                       field_type=self.field_type)
46

theos's avatar
theos committed
47
48
        self.datamodel = self._parse_datamodel(datamodel=datamodel,
                                               val=val)
csongor's avatar
csongor committed
49
50
51

        self.set_val(new_val=val, copy=copy)

52
    def _parse_domain(self, domain, val=None):
53
        if domain is None:
54
55
56
57
            if isinstance(val, Field):
                domain = val.domain
            else:
                domain = ()
58
        elif isinstance(domain, Space):
59
            domain = (domain,)
60
61
62
        elif not isinstance(domain, tuple):
            domain = tuple(domain)

csongor's avatar
csongor committed
63
        for d in domain:
64
            if not isinstance(d, Space):
csongor's avatar
csongor committed
65
                raise TypeError(about._errors.cstring(
66
67
                    "ERROR: Given domain contains something that is not a "
                    "nifty.space."))
csongor's avatar
csongor committed
68
69
        return domain

70
    def _parse_field_type(self, field_type, val=None):
71
        if field_type is None:
72
73
74
75
            if isinstance(val, Field):
                field_type = val.field_type
            else:
                field_type = ()
76
        elif isinstance(field_type, FieldType):
77
            field_type = (field_type,)
78
79
        elif not isinstance(field_type, tuple):
            field_type = tuple(field_type)
80
        for ft in field_type:
81
            if not isinstance(ft, FieldType):
82
                raise TypeError(about._errors.cstring(
83
                    "ERROR: Given object is not a nifty.FieldType."))
84
85
        return field_type

theos's avatar
theos committed
86
87
88
89
90
91
92
93
94
95
    def _get_axes_tuple(self, things_with_shape, start=0):
        i = start
        axes_list = []
        for thing in things_with_shape:
            l = []
            for j in range(len(thing.shape)):
                l += [i]
                i += 1
            axes_list += [tuple(l)]
        return tuple(axes_list)
96

97
    def _infer_dtype(self, dtype, val, domain, field_type):
csongor's avatar
csongor committed
98
        if dtype is None:
99
100
101
            if isinstance(val, Field) or \
               isinstance(val, distributed_data_object):
                dtype = val.dtype
theos's avatar
theos committed
102
103
104
105
106
107
108
            dtype_tuple = (np.dtype(gc['default_field_dtype']),)
        else:
            dtype_tuple = (np.dtype(dtype),)
        if domain is not None:
            dtype_tuple += tuple(np.dtype(sp.dtype) for sp in domain)
        if field_type is not None:
            dtype_tuple += tuple(np.dtype(ft.dtype) for ft in field_type)
csongor's avatar
csongor committed
109

theos's avatar
theos committed
110
        dtype = reduce(lambda x, y: np.result_type(x, y), dtype_tuple)
111

theos's avatar
theos committed
112
        return dtype
113

theos's avatar
theos committed
114
    def _parse_datamodel(self, datamodel, val):
115
116
117
118
119
120
121
122
123
124
125
126
127
128
        if datamodel is None:
            if isinstance(val, distributed_data_object):
                datamodel = val.distribution_strategy
            elif isinstance(val, Field):
                datamodel = val.datamodel
            else:
                about.warnings.cprint("WARNING: Datamodel set to default!")
                datamodel = gc['default_datamodel']
        elif datamodel not in DISTRIBUTION_STRATEGIES['all']:
            raise ValueError(about._errors.cstring(
                    "ERROR: Invalid datamodel!"))
        return datamodel

    # ---Factory methods---
129

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
    @classmethod
    def from_random(cls, random_type, domain=None, dtype=None, field_type=None,
                    datamodel=None, **kwargs):
        # create a initially empty field
        f = cls(domain=domain, dtype=dtype, field_type=field_type,
                datamodel=datamodel)

        # now use the processed input in terms of f in order to parse the
        # random arguments
        random_arguments = cls._parse_random_arguments(random_type=random_type,
                                                       f=f,
                                                       **kwargs)

        # extract the distributed_dato_object from f and apply the appropriate
        # random number generator to it
        sample = f.get_val(copy=False)
        generator_function = getattr(Random, random_type)
        sample.apply_generator(
            lambda shape: generator_function(dtype=f.dtype,
                                             shape=shape,
                                             **random_arguments))
        return f

    @staticmethod
    def _parse_random_arguments(random_type, f, **kwargs):

        if random_type == "pm1":
            random_arguments = {}

        elif random_type == "normal":
            mean = kwargs.get('mean', 0)
            std = kwargs.get('std', 1)
            random_arguments = {'mean': mean,
                                'std': std}

        elif random_type == "uniform":
            low = kwargs.get('low', 0)
            high = kwargs.get('high', 1)
            random_arguments = {'low': low,
                                'high': high}

#        elif random_type == 'syn':
#            pass

csongor's avatar
csongor committed
174
        else:
175
176
            raise KeyError(about._errors.cstring(
                "ERROR: unsupported random key '" + str(random_type) + "'."))
csongor's avatar
csongor committed
177

178
        return random_arguments
csongor's avatar
csongor committed
179

180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
    def power_analyze(self, spaces=None, log=False, nbin=None, binbounds=None):
        # check if the spaces input is valid
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
        if spaces is None:
            if len(self.domain) == 1:
                spaces = (0,)
            else:
                raise ValueError(about._errors.cstring(
                    "ERROR: Field has multiple spaces as domain "
                    "but `spaces` is None."))

        if len(spaces) == 0:
            raise ValueError(about._errors.cstring(
                "ERROR: No space for analysis specified."))
        elif len(spaces) > 1:
            raise ValueError(about._errors.cstring(
                "ERROR: Conversion of only one space at a time is allowed."))

        space_index = spaces[0]

        if not self.domain[space_index].harmonic:
            raise ValueError(about._errors.cstring(
                "ERROR: Conversion of only one space at a time is allowed."))

        # create the target PowerSpace instance
        distribution_strategy = \
            self.val.get_axes_local_distribution_strategy(
                self.domain_axes[space_index])

        harmonic_domain = self.domain[space_index]
        power_domain = PowerSpace(harmonic_domain=harmonic_domain,
                                  datamodel=distribution_strategy,
                                  log=log, nbin=nbin, binbounds=binbounds)

        # extract pindex and rho from power_domain and calculate the spectrum
        pindex = power_domain.pindex
        rho = power_domain.rho
        power_spectrum = self._calculate_power_spectrum(
                                            x=self.val,
                                            pindex=pindex,
                                            rho=rho,
                                            axes=self.domain_axes[space_index])

        # create the result field and put power_spectrum into it
        result_domain = list(self.domain)
        result_domain[space_index] = power_domain

        result_field = self.copy_empty(domain=result_domain)
        result_field.set_val(new_val=power_spectrum, copy=False)

        return result_field

    def _calculate_power_spectrum(self, x, pindex, rho, axes=None):
        fieldabs = abs(x)
        fieldabs **= 2

        if axes is not None:
            pindex = self._shape_up_pindex(
                                    pindex=pindex,
                                    target_shape=x.shape,
                                    target_strategy=x.distribution_strategy,
                                    axes=axes)
        power_spectrum = pindex.bincount(weights=fieldabs,
                                         axis=axes)
        if axes is not None:
            new_rho_shape = [1, ] * len(power_spectrum.shape)
            new_rho_shape[axes[0]] = len(rho)
            rho = rho.reshape(new_rho_shape)
        power_spectrum /= rho

        power_spectrum **= 0.5
        return power_spectrum

    def _shape_up_pindex(self, pindex, target_shape, target_strategy, axes):
        if pindex.distribution_strategy not in \
                DISTRIBUTION_STRATEGIES['global']:
            raise ValueError("ERROR: pindex's distribution strategy must be "
                             "global-type")

        if pindex.distribution_strategy in DISTRIBUTION_STRATEGIES['slicing']:
            if ((0 not in axes) or
                    (target_strategy is not pindex.distribution_strategy)):
                raise ValueError(
                    "ERROR: A slicing distributor shall not be reshaped to "
                    "something non-sliced.")

        semiscaled_shape = [1, ] * len(target_shape)
        for i in axes:
            semiscaled_shape[i] = target_shape[i]
        local_data = pindex.get_local_data(copy=False)
        semiscaled_local_data = local_data.reshape(semiscaled_shape)
        result_obj = pindex.copy_empty(global_shape=target_shape,
                                       distribution_strategy=target_strategy)
        result_obj.set_full_data(semiscaled_local_data, copy=False)

        return result_obj

    def power_synthesize(self):
        # check that all spaces in self.domain are real or instances of power_space
        # check if field is real- or complex-valued
Jait Dixit's avatar
Jait Dixit committed
280
        pass
281

theos's avatar
theos committed
282
    # ---Properties---
283

theos's avatar
theos committed
284
    def set_val(self, new_val=None, copy=False):
285
286
        new_val = self.cast(new_val)
        if copy:
theos's avatar
theos committed
287
288
289
            new_val = new_val.copy()
        self._val = new_val
        return self._val
csongor's avatar
csongor committed
290

291
292
    def get_val(self, copy=False):
        if copy:
theos's avatar
theos committed
293
            return self._val.copy()
294
        else:
theos's avatar
theos committed
295
            return self._val
csongor's avatar
csongor committed
296

theos's avatar
theos committed
297
298
299
    @property
    def val(self):
        return self._val
csongor's avatar
csongor committed
300

theos's avatar
theos committed
301
302
303
    @val.setter
    def val(self, new_val):
        self._val = self.cast(new_val)
csongor's avatar
csongor committed
304

305
306
    @property
    def shape(self):
307
308
309
310
311
312
313
        shape_tuple = ()
        shape_tuple += tuple(sp.shape for sp in self.domain)
        shape_tuple += tuple(ft.shape for ft in self.field_type)
        try:
            global_shape = reduce(lambda x, y: x + y, shape_tuple)
        except TypeError:
            global_shape = ()
csongor's avatar
csongor committed
314

315
        return global_shape
csongor's avatar
csongor committed
316

317
318
    @property
    def dim(self):
theos's avatar
theos committed
319
320
321
322
323
324
325
        dim_tuple = ()
        dim_tuple += tuple(sp.dim for sp in self.domain)
        dim_tuple += tuple(ft.dim for ft in self.field_type)
        try:
            return reduce(lambda x, y: x * y, dim_tuple)
        except TypeError:
            return 0
csongor's avatar
csongor committed
326

327
328
    @property
    def dof(self):
theos's avatar
theos committed
329
330
331
332
333
334
335
336
        dof = self.dim
        if issubclass(self.dtype.type, np.complexfloating):
            dof *= 2
        return dof

    @property
    def total_volume(self):
        volume_tuple = tuple(sp.total_volume for sp in self.domain)
337
        try:
theos's avatar
theos committed
338
            return reduce(lambda x, y: x * y, volume_tuple)
339
        except TypeError:
theos's avatar
theos committed
340
            return 0
341

theos's avatar
theos committed
342
    # ---Special unary/binary operations---
343

csongor's avatar
csongor committed
344
345
346
    def cast(self, x=None, dtype=None):
        if dtype is None:
            dtype = self.dtype
347
348
        else:
            dtype = np.dtype(dtype)
349

theos's avatar
theos committed
350
        casted_x = self._actual_cast(x, dtype=dtype)
351
352

        for ind, sp in enumerate(self.domain):
353
            casted_x = sp.complement_cast(casted_x,
theos's avatar
theos committed
354
                                          axes=self.domain_axes[ind])
355
356
357

        for ind, ft in enumerate(self.field_type):
            casted_x = ft.complement_cast(casted_x,
theos's avatar
theos committed
358
                                          axes=self.field_type_axes[ind])
359
360

        return casted_x
csongor's avatar
csongor committed
361

theos's avatar
theos committed
362
    def _actual_cast(self, x, dtype=None):
363
        if isinstance(x, Field):
csongor's avatar
csongor committed
364
365
366
367
368
            x = x.get_val()

        if dtype is None:
            dtype = self.dtype

theos's avatar
theos committed
369
370
371
        x = distributed_data_object(x,
                                    global_shape=self.shape,
                                    dtype=dtype,
csongor's avatar
csongor committed
372
373
                                    distribution_strategy=self.datamodel)

theos's avatar
theos committed
374
375
376
377
378
379
380
381
382
383
384
        return x

    def copy(self, domain=None, dtype=None, field_type=None,
             datamodel=None):
        copied_val = self.get_val(copy=True)
        new_field = self.copy_empty(domain=domain,
                                    dtype=dtype,
                                    field_type=field_type,
                                    datamodel=datamodel)
        new_field.set_val(new_val=copied_val, copy=False)
        return new_field
csongor's avatar
csongor committed
385

theos's avatar
theos committed
386
387
388
389
    def copy_empty(self, domain=None, dtype=None, field_type=None,
                   datamodel=None):
        if domain is None:
            domain = self.domain
csongor's avatar
csongor committed
390
        else:
theos's avatar
theos committed
391
            domain = self._parse_domain(domain)
csongor's avatar
csongor committed
392

theos's avatar
theos committed
393
394
395
396
        if dtype is None:
            dtype = self.dtype
        else:
            dtype = np.dtype(dtype)
csongor's avatar
csongor committed
397

theos's avatar
theos committed
398
399
400
401
        if field_type is None:
            field_type = self.field_type
        else:
            field_type = self._parse_field_type(field_type)
csongor's avatar
csongor committed
402

theos's avatar
theos committed
403
404
        if datamodel is None:
            datamodel = self.datamodel
csongor's avatar
csongor committed
405

theos's avatar
theos committed
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
        fast_copyable = True
        try:
            for i in xrange(len(self.domain)):
                if self.domain[i] is not domain[i]:
                    fast_copyable = False
                    break
            for i in xrange(len(self.field_type)):
                if self.field_type[i] is not field_type[i]:
                    fast_copyable = False
                    break
        except IndexError:
            fast_copyable = False

        if (fast_copyable and dtype == self.dtype and
                datamodel == self.datamodel):
            new_field = self._fast_copy_empty()
        else:
            new_field = Field(domain=domain,
                              dtype=dtype,
                              field_type=field_type,
                              datamodel=datamodel)
        return new_field
csongor's avatar
csongor committed
428

theos's avatar
theos committed
429
430
431
432
433
434
435
436
437
438
439
440
441
442
    def _fast_copy_empty(self):
        # make an empty field
        new_field = EmptyField()
        # repair its class
        new_field.__class__ = self.__class__
        # copy domain, codomain and val
        for key, value in self.__dict__.items():
            if key != 'val':
                new_field.__dict__[key] = value
            else:
                new_field.__dict__[key] = self.val.copy_empty()
        return new_field

    def weight(self, power=1, inplace=False, spaces=None):
443
        if inplace:
csongor's avatar
csongor committed
444
445
446
447
            new_field = self
        else:
            new_field = self.copy_empty()

448
        new_val = self.get_val(copy=False)
csongor's avatar
csongor committed
449

csongor's avatar
csongor committed
450
        if spaces is None:
theos's avatar
theos committed
451
452
453
            spaces = range(len(self.domain))
        else:
            spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
csongor's avatar
csongor committed
454

455
        for ind, sp in enumerate(self.domain):
theos's avatar
theos committed
456
457
458
459
460
            if ind in spaces:
                new_val = sp.weight(new_val,
                                    power=power,
                                    axes=self.domain_axes[ind],
                                    inplace=inplace)
461
462

        new_field.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
463
464
        return new_field

theos's avatar
theos committed
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
    def dot(self, x=None, bare=False):
        if isinstance(x, Field):
            try:
                assert len(x.domain) == len(self.domain)
                for index in xrange(len(self.domain)):
                    assert x.domain[index] == self.domain[index]
                for index in xrange(len(self.field_type)):
                    assert x.field_type[index] == self.field_type[index]
            except AssertionError:
                raise ValueError(about._errors.cstring(
                    "ERROR: domains are incompatible."))
            # extract the data from x and try to dot with this
            x = x.get_val(copy=False)

        # Compute the dot respecting the fact of discrete/continous spaces
        if bare:
            y = self
        else:
            y = self.weight(power=1)

        y = y.get_val(copy=False)

        # Cast the input in order to cure dtype and shape differences
        x = self.cast(x)

        dotted = x.conjugate() * y

        return dotted.sum()

494
    def norm(self, q=2):
csongor's avatar
csongor committed
495
496
497
498
499
500
501
502
503
504
505
506
507
508
        """
            Computes the Lq-norm of the field values.

            Parameters
            ----------
            q : scalar
                Parameter q of the Lq-norm (default: 2).

            Returns
            -------
            norm : scalar
                The Lq-norm of the field values.

        """
509
        if q == 2:
510
            return (self.dot(x=self)) ** (1 / 2)
csongor's avatar
csongor committed
511
        else:
512
            return self.dot(x=self ** (q - 1)) ** (1 / q)
csongor's avatar
csongor committed
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528

    def conjugate(self, inplace=False):
        """
            Computes the complex conjugate of the field.

            Returns
            -------
            cc : field
                The complex conjugated field.

        """
        if inplace:
            work_field = self
        else:
            work_field = self.copy_empty()

529
        new_val = self.get_val(copy=False)
theos's avatar
theos committed
530
        new_val = new_val.conjugate()
531
        work_field.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
532
533
534

        return work_field

theos's avatar
theos committed
535
    # ---General unary/contraction methods---
536

theos's avatar
theos committed
537
538
    def __pos__(self):
        return self.copy()
539

theos's avatar
theos committed
540
541
542
543
    def __neg__(self):
        return_field = self.copy_empty()
        new_val = -self.get_val(copy=False)
        return_field.set_val(new_val, copy=False)
csongor's avatar
csongor committed
544
545
        return return_field

theos's avatar
theos committed
546
547
548
549
550
    def __abs__(self):
        return_field = self.copy_empty()
        new_val = abs(self.get_val(copy=False))
        return_field.set_val(new_val, copy=False)
        return return_field
csongor's avatar
csongor committed
551

theos's avatar
theos committed
552
553
554
555
556
557
    def _contraction_helper(self, op, spaces, types):
        # build a list of all axes
        if spaces is None:
            spaces = xrange(len(self.domain))
        else:
            spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
csongor's avatar
csongor committed
558

theos's avatar
theos committed
559
560
561
562
        if types is None:
            types = xrange(len(self.field_type))
        else:
            types = utilities.cast_axis_to_tuple(types, len(self.field_type))
563

theos's avatar
theos committed
564
565
566
567
        axes_list = ()
        axes_list += tuple(self.domain_axes[sp_index] for sp_index in spaces)
        axes_list += tuple(self.field_type_axes[ft_index] for
                           ft_index in types)
568
        try:
theos's avatar
theos committed
569
            axes_list = reduce(lambda x, y: x+y, axes_list)
570
        except TypeError:
theos's avatar
theos committed
571
            axes_list = ()
csongor's avatar
csongor committed
572

theos's avatar
theos committed
573
574
575
        # perform the contraction on the d2o
        data = self.get_val(copy=False)
        data = getattr(data, op)(axis=axes_list)
csongor's avatar
csongor committed
576

theos's avatar
theos committed
577
578
579
        # check if the result is scalar or if a result_field must be constr.
        if np.isscalar(data):
            return data
csongor's avatar
csongor committed
580
        else:
theos's avatar
theos committed
581
582
583
584
585
586
587
588
589
590
591
            return_domain = tuple(self.domain[i]
                                  for i in xrange(len(self.domain))
                                  if i not in spaces)
            return_field_type = tuple(self.field_type[i]
                                      for i in xrange(len(self.field_type))
                                      if i not in types)
            return_field = Field(domain=return_domain,
                                 val=data,
                                 field_type=return_field_type,
                                 copy=False)
            return return_field
csongor's avatar
csongor committed
592

theos's avatar
theos committed
593
594
    def sum(self, spaces=None, types=None):
        return self._contraction_helper('sum', spaces, types)
csongor's avatar
csongor committed
595

theos's avatar
theos committed
596
597
    def prod(self, spaces=None, types=None):
        return self._contraction_helper('prod', spaces, types)
csongor's avatar
csongor committed
598

theos's avatar
theos committed
599
600
    def all(self, spaces=None, types=None):
        return self._contraction_helper('all', spaces, types)
csongor's avatar
csongor committed
601

theos's avatar
theos committed
602
603
    def any(self, spaces=None, types=None):
        return self._contraction_helper('any', spaces, types)
csongor's avatar
csongor committed
604

theos's avatar
theos committed
605
606
    def min(self, spaces=None, types=None):
        return self._contraction_helper('min', spaces, types)
csongor's avatar
csongor committed
607

theos's avatar
theos committed
608
609
    def nanmin(self, spaces=None, types=None):
        return self._contraction_helper('nanmin', spaces, types)
csongor's avatar
csongor committed
610

theos's avatar
theos committed
611
612
    def max(self, spaces=None, types=None):
        return self._contraction_helper('max', spaces, types)
csongor's avatar
csongor committed
613

theos's avatar
theos committed
614
615
    def nanmax(self, spaces=None, types=None):
        return self._contraction_helper('nanmax', spaces, types)
csongor's avatar
csongor committed
616

theos's avatar
theos committed
617
618
    def mean(self, spaces=None, types=None):
        return self._contraction_helper('mean', spaces, types)
csongor's avatar
csongor committed
619

theos's avatar
theos committed
620
621
    def var(self, spaces=None, types=None):
        return self._contraction_helper('var', spaces, types)
csongor's avatar
csongor committed
622

theos's avatar
theos committed
623
624
    def std(self, spaces=None, types=None):
        return self._contraction_helper('std', spaces, types)
csongor's avatar
csongor committed
625

theos's avatar
theos committed
626
    # ---General binary methods---
csongor's avatar
csongor committed
627

theos's avatar
theos committed
628
    def _binary_helper(self, other, op, inplace=False):
csongor's avatar
csongor committed
629
        # if other is a field, make sure that the domains match
630
        if isinstance(other, Field):
theos's avatar
theos committed
631
632
633
634
            try:
                assert len(other.domain) == len(self.domain)
                for index in xrange(len(self.domain)):
                    assert other.domain[index] == self.domain[index]
635
                assert len(other.field_type) == len(self.field_type)
theos's avatar
theos committed
636
637
638
639
640
641
                for index in xrange(len(self.field_type)):
                    assert other.field_type[index] == self.field_type[index]
            except AssertionError:
                raise ValueError(about._errors.cstring(
                    "ERROR: domains are incompatible."))
            other = other.get_val(copy=False)
csongor's avatar
csongor committed
642

theos's avatar
theos committed
643
644
        self_val = self.get_val(copy=False)
        return_val = getattr(self_val, op)(other)
csongor's avatar
csongor committed
645
646
647
648
649
650

        if inplace:
            working_field = self
        else:
            working_field = self.copy_empty()

theos's avatar
theos committed
651
        working_field.set_val(return_val, copy=False)
csongor's avatar
csongor committed
652
653
654
        return working_field

    def __add__(self, other):
theos's avatar
theos committed
655
        return self._binary_helper(other, op='__add__')
656

657
    def __radd__(self, other):
theos's avatar
theos committed
658
        return self._binary_helper(other, op='__radd__')
csongor's avatar
csongor committed
659
660

    def __iadd__(self, other):
theos's avatar
theos committed
661
        return self._binary_helper(other, op='__iadd__', inplace=True)
csongor's avatar
csongor committed
662
663

    def __sub__(self, other):
theos's avatar
theos committed
664
        return self._binary_helper(other, op='__sub__')
csongor's avatar
csongor committed
665
666

    def __rsub__(self, other):
theos's avatar
theos committed
667
        return self._binary_helper(other, op='__rsub__')
csongor's avatar
csongor committed
668
669

    def __isub__(self, other):
theos's avatar
theos committed
670
        return self._binary_helper(other, op='__isub__', inplace=True)
csongor's avatar
csongor committed
671
672

    def __mul__(self, other):
theos's avatar
theos committed
673
        return self._binary_helper(other, op='__mul__')
674

675
    def __rmul__(self, other):
theos's avatar
theos committed
676
        return self._binary_helper(other, op='__rmul__')
csongor's avatar
csongor committed
677
678

    def __imul__(self, other):
theos's avatar
theos committed
679
        return self._binary_helper(other, op='__imul__', inplace=True)
csongor's avatar
csongor committed
680
681

    def __div__(self, other):
theos's avatar
theos committed
682
        return self._binary_helper(other, op='__div__')
csongor's avatar
csongor committed
683
684

    def __rdiv__(self, other):
theos's avatar
theos committed
685
        return self._binary_helper(other, op='__rdiv__')
csongor's avatar
csongor committed
686
687

    def __idiv__(self, other):
theos's avatar
theos committed
688
        return self._binary_helper(other, op='__idiv__', inplace=True)
689

csongor's avatar
csongor committed
690
    def __pow__(self, other):
theos's avatar
theos committed
691
        return self._binary_helper(other, op='__pow__')
csongor's avatar
csongor committed
692
693

    def __rpow__(self, other):
theos's avatar
theos committed
694
        return self._binary_helper(other, op='__rpow__')
csongor's avatar
csongor committed
695
696

    def __ipow__(self, other):
theos's avatar
theos committed
697
        return self._binary_helper(other, op='__ipow__', inplace=True)
csongor's avatar
csongor committed
698
699

    def __lt__(self, other):
theos's avatar
theos committed
700
        return self._binary_helper(other, op='__lt__')
csongor's avatar
csongor committed
701
702

    def __le__(self, other):
theos's avatar
theos committed
703
        return self._binary_helper(other, op='__le__')
csongor's avatar
csongor committed
704
705
706
707
708

    def __ne__(self, other):
        if other is None:
            return True
        else:
theos's avatar
theos committed
709
            return self._binary_helper(other, op='__ne__')
csongor's avatar
csongor committed
710
711
712
713
714

    def __eq__(self, other):
        if other is None:
            return False
        else:
theos's avatar
theos committed
715
            return self._binary_helper(other, op='__eq__')
csongor's avatar
csongor committed
716
717

    def __ge__(self, other):
theos's avatar
theos committed
718
        return self._binary_helper(other, op='__ge__')
csongor's avatar
csongor committed
719
720

    def __gt__(self, other):
theos's avatar
theos committed
721
722
723
724
725
726
727
728
729
730
731
732
733
        return self._binary_helper(other, op='__gt__')

    def __repr__(self):
        return "<nifty_core.field>"

    def __str__(self):
        minmax = [self.min(), self.max()]
        mean = self.mean()
        return "nifty_core.field instance\n- domain      = " + \
               repr(self.domain) + \
               "\n- val         = " + repr(self.get_val()) + \
               "\n  - min.,max. = " + str(minmax) + \
               "\n  - mean = " + str(mean)
csongor's avatar
csongor committed
734

735

736
class EmptyField(Field):
csongor's avatar
csongor committed
737
738
    def __init__(self):
        pass