power_space.py 8.23 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
14
15
16
17
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
Theo Steininger's avatar
Theo Steininger committed
18

19
import numpy as np
Martin Reinecke's avatar
Martin Reinecke committed
20
from .structured_domain import StructuredDomain
Martin Reinecke's avatar
Martin Reinecke committed
21
from .. import dobj
Theo Steininger's avatar
Theo Steininger committed
22
23


Martin Reinecke's avatar
Martin Reinecke committed
24
class PowerSpace(StructuredDomain):
Martin Reinecke's avatar
Martin Reinecke committed
25
    """NIFTy class for spaces of power spectra.
Theo Steininger's avatar
Theo Steininger committed
26

Martin Reinecke's avatar
Martin Reinecke committed
27
28
29
    A power space is the result of a projection of a harmonic space where
    k-modes of equal length get mapped to one power index.

Theo Steininger's avatar
Theo Steininger committed
30
31
32
33
    Parameters
    ----------
    harmonic_partner : Space
        The harmonic Space of which this is the power space.
Martin Reinecke's avatar
Martin Reinecke committed
34
35
36
37
38
39
40
41
42
43
44
    binbounds: None, or tuple/array/list of float
        if None:
            There will be as many bins as there are distinct k-vector lengths
            in the harmonic partner space.
            The "binbounds" property of the PowerSpace will also be None.
        else:
            the bin bounds requested for this PowerSpace. The array
            must be sorted and strictly ascending. The first entry is the right
            boundary of the first bin, and the last entry is the left boundary
            of the last bin, i.e. thee will be len(binbounds)+1 bins in total,
            with the first and last bins reaching to -+infinity, respectively.
45
            (default : None)
Theo Steininger's avatar
Theo Steininger committed
46
    """
47

48
49
    _powerIndexCache = {}

Martin Reinecke's avatar
Martin Reinecke committed
50
    @staticmethod
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
51
    def linear_binbounds(nbin, first_bound, last_bound):
Martin Reinecke's avatar
Martin Reinecke committed
52
        """
Martin Reinecke's avatar
Martin Reinecke committed
53
54
55
56
        This will produce a binbounds array with nbin-1 entries with
        binbounds[0]=first_bound and binbounds[-1]=last_bound and the remaining
        values equidistantly spaced (in linear scale) between these two.

Martin Reinecke's avatar
Martin Reinecke committed
57
58
59
60
61
62
63
64
        nbin: integer
            the number of bins
        first_bound, last_bound: float
            the k values for the right boundary of the first bin and the left
            boundary of the last bin, respectively. They are given in length
            units of the harmonic partner space.
        """
        nbin = int(nbin)
65
66
        if nbin < 3:
            raise ValueError("nbin must be at least 3")
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
67
        return np.linspace(float(first_bound), float(last_bound), nbin-1)
Martin Reinecke's avatar
Martin Reinecke committed
68
69

    @staticmethod
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
70
    def logarithmic_binbounds(nbin, first_bound, last_bound):
Martin Reinecke's avatar
Martin Reinecke committed
71
        """
Martin Reinecke's avatar
Martin Reinecke committed
72
73
74
75
76
        This will produce a binbounds array with nbin-1 entries with
        binbounds[0]=first_bound and binbounds[-1]=last_bound and the remaining
        values equidistantly spaced (in natural logarithmic scale)
        between these two.

Martin Reinecke's avatar
Martin Reinecke committed
77
78
79
80
81
82
83
        nbin: integer
            the number of bins
        first_bound, last_bound: float
            the k values for the right boundary of the first bin and the left
            boundary of the last bin, respectively. They are given in length
            units of the harmonic partner space.
        """
Martin Reinecke's avatar
Martin Reinecke committed
84
        nbin = int(nbin)
85
86
        if nbin < 3:
            raise ValueError("nbin must be at least 3")
Martin Reinecke's avatar
Martin Reinecke committed
87
88
89
        return np.logspace(np.log(float(first_bound)),
                           np.log(float(last_bound)),
                           nbin-1, base=np.e)
Martin Reinecke's avatar
Martin Reinecke committed
90

91
92
    @staticmethod
    def useful_binbounds(space, logarithmic, nbin=None):
Martin Reinecke's avatar
Martin Reinecke committed
93
        if not (isinstance(space, StructuredDomain) and space.harmonic):
94
95
96
97
98
            raise ValueError("first argument must be a harmonic space.")
        if logarithmic is None and nbin is None:
            return None
        nbin = None if nbin is None else int(nbin)
        logarithmic = bool(logarithmic)
99
        dists = space.get_unique_k_lengths()
100
101
102
103
104
105
106
107
108
109
110
111
        if len(dists) < 3:
            raise ValueError("Space does not have enough unique k lengths")
        lbound = 0.5*(dists[0]+dists[1])
        rbound = 0.5*(dists[-2]+dists[-1])
        dists[0] = lbound
        dists[-1] = rbound
        if logarithmic:
            dists = np.log(dists)
        binsz_min = np.max(np.diff(dists))
        nbin_max = int((dists[-1]-dists[0])/binsz_min)+2
        if nbin is None:
            nbin = nbin_max
112
113
        if nbin < 3:
            raise ValueError("nbin must be at least 3")
114
115
116
117
118
119
120
        if nbin > nbin_max:
            raise ValueError("nbin is too large")
        if logarithmic:
            return PowerSpace.logarithmic_binbounds(nbin, lbound, rbound)
        else:
            return PowerSpace.linear_binbounds(nbin, lbound, rbound)

Martin Reinecke's avatar
Martin Reinecke committed
121
    def __init__(self, harmonic_partner, binbounds=None):
Martin Reinecke's avatar
Martin Reinecke committed
122
        super(PowerSpace, self).__init__()
123
        self._needed_for_hash += ['_harmonic_partner', '_binbounds']
124

Martin Reinecke's avatar
Martin Reinecke committed
125
        if not (isinstance(harmonic_partner, StructuredDomain) and
Martin Reinecke's avatar
Martin Reinecke committed
126
127
                harmonic_partner.harmonic):
            raise ValueError("harmonic_partner must be a harmonic space.")
Martin Reinecke's avatar
Martin Reinecke committed
128
129
130
        if harmonic_partner.scalar_dvol() is None:
            raise ValueError("harmonic partner must have "
                             "scalar volume factors")
131
        self._harmonic_partner = harmonic_partner
Martin Reinecke's avatar
Martin Reinecke committed
132
        pdvol = harmonic_partner.scalar_dvol()
133

Martin Reinecke's avatar
Martin Reinecke committed
134
135
        if binbounds is not None:
            binbounds = tuple(binbounds)
136

Martin Reinecke's avatar
Martin Reinecke committed
137
        key = (harmonic_partner, binbounds)
138
        if self._powerIndexCache.get(key) is None:
139
            k_length_array = self.harmonic_partner.get_k_length_array()
Martin Reinecke's avatar
Martin Reinecke committed
140
141
142
143
144
145
            if binbounds is None:
                tmp = harmonic_partner.get_unique_k_lengths()
                tbb = 0.5*(tmp[:-1]+tmp[1:])
            else:
                tbb = binbounds
            locdat = np.searchsorted(tbb, dobj.local_data(k_length_array.val))
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
146
            temp_pindex = dobj.from_local_data(
147
148
                k_length_array.val.shape, locdat,
                dobj.distaxis(k_length_array.val))
Martin Reinecke's avatar
Martin Reinecke committed
149
            nbin = len(tbb)+1
Martin Reinecke's avatar
Martin Reinecke committed
150
151
            temp_rho = np.bincount(dobj.local_data(temp_pindex).ravel(),
                                   minlength=nbin)
Martin Reinecke's avatar
Martin Reinecke committed
152
            temp_rho = dobj.np_allreduce_sum(temp_rho)
153
154
            if (temp_rho == 0).any():
                raise ValueError("empty bins detected")
Martin Reinecke's avatar
Martin Reinecke committed
155
156
157
            # The explicit conversion to float64 is necessary because bincount
            # sometimes returns its result as an integer array, even when
            # floating-point weights are present ...
158
159
            temp_k_lengths = np.bincount(
                dobj.local_data(temp_pindex).ravel(),
Martin Reinecke's avatar
Martin Reinecke committed
160
                weights=dobj.local_data(k_length_array.val).ravel(),
Martin Reinecke's avatar
Martin Reinecke committed
161
                minlength=nbin).astype(np.float64, copy=False)
Martin Reinecke's avatar
Martin Reinecke committed
162
            temp_k_lengths = dobj.np_allreduce_sum(temp_k_lengths) / temp_rho
Martin Reinecke's avatar
Martin Reinecke committed
163
            temp_dvol = temp_rho*pdvol
Martin Reinecke's avatar
Martin Reinecke committed
164
165
            self._powerIndexCache[key] = (binbounds, temp_pindex,
                                          temp_k_lengths, temp_dvol)
166

Martin Reinecke's avatar
Martin Reinecke committed
167
        (self._binbounds, self._pindex, self._k_lengths, self._dvol) = \
168
169
            self._powerIndexCache[key]

170
    def __repr__(self):
Martin Reinecke's avatar
stage1    
Martin Reinecke committed
171
172
        return ("PowerSpace(harmonic_partner=%r, binbounds=%r)"
                % (self.harmonic_partner, self._binbounds))
173

174
175
    @property
    def harmonic(self):
176
        return False
177

178
179
    @property
    def shape(self):
Martin Reinecke's avatar
Martin Reinecke committed
180
        return self.k_lengths.shape
181

182
    @property
Martin Reinecke's avatar
Martin Reinecke committed
183
    def size(self):
184
185
        return self.shape[0]

186
    def scalar_dvol(self):
Martin Reinecke's avatar
Martin Reinecke committed
187
188
189
190
        return None

    def dvol(self):
        return self._dvol
191

192
    @property
193
    def harmonic_partner(self):
Martin Reinecke's avatar
Martin Reinecke committed
194
        """Returns the Space of which this is the power space."""
195
        return self._harmonic_partner
196
197

    @property
Martin Reinecke's avatar
Martin Reinecke committed
198
    def binbounds(self):
Martin Reinecke's avatar
Martin Reinecke committed
199
200
201
        """Returns the boundaries between the power spectrum bins as a tuple.
        None is used to indicate natural binning.
        """
Martin Reinecke's avatar
Martin Reinecke committed
202
        return self._binbounds
203
204
205

    @property
    def pindex(self):
Martin Reinecke's avatar
Martin Reinecke committed
206
        """Returns a data object having the shape of the harmonic partner
Theo Steininger's avatar
Theo Steininger committed
207
208
        space containing the indices of the power bin a pixel belongs to.
        """
209
210
211
        return self._pindex

    @property
Martin Reinecke's avatar
Martin Reinecke committed
212
    def k_lengths(self):
Martin Reinecke's avatar
Martin Reinecke committed
213
        """Returns a sorted array of all k-modes."""
Martin Reinecke's avatar
Martin Reinecke committed
214
        return self._k_lengths