rg_space.py 7.07 KB
Newer Older
1 2 3 4
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
5
#
6 7
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
8 9 10
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
11
# You should have received a copy of the GNU General Public License
12
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
#
Martin Reinecke's avatar
Martin Reinecke committed
14
# Copyright(C) 2013-2018 Max-Planck-Society
Theo Steininger's avatar
Theo Steininger committed
15 16 17
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
Marco Selig's avatar
Marco Selig committed
18 19

from __future__ import division
Martin Reinecke's avatar
Martin Reinecke committed
20
from builtins import range
Martin Reinecke's avatar
Martin Reinecke committed
21
from functools import reduce
Marco Selig's avatar
Marco Selig committed
22
import numpy as np
Martin Reinecke's avatar
Martin Reinecke committed
23
from .structured_domain import StructuredDomain
Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
24
from ..field import Field, exp
Martin Reinecke's avatar
Martin Reinecke committed
25
from .. import dobj
csongor's avatar
csongor committed
26

Marco Selig's avatar
Marco Selig committed
27

Martin Reinecke's avatar
Martin Reinecke committed
28 29
class RGSpace(StructuredDomain):
    """NIFTy subclass for regular Cartesian grids.
Martin Reinecke's avatar
Martin Reinecke committed
30 31 32

    Parameters
    ----------
Martin Reinecke's avatar
Martin Reinecke committed
33
    shape : int or tuple of int
Martin Reinecke's avatar
Martin Reinecke committed
34
        Number of grid points or numbers of gridpoints along each axis.
Martin Reinecke's avatar
Martin Reinecke committed
35
    distances : None or float or tuple of float, optional
Martin Reinecke's avatar
Martin Reinecke committed
36 37
        Distance between two grid points along each axis
        (default: None).
Martin Reinecke's avatar
Martin Reinecke committed
38 39 40 41 42 43 44 45

        If distances is None:

          - if harmonic==True, all distances will be set to 1

          - if harmonic==False, the distance along each axis will be
            set to the inverse of the number of points along that axis.

Martin Reinecke's avatar
Martin Reinecke committed
46
    harmonic : bool, optional
47
        Whether the space represents a grid in position or harmonic space.
Martin Reinecke's avatar
Martin Reinecke committed
48
        (default: False).
Marco Selig's avatar
Marco Selig committed
49
    """
Martin Reinecke's avatar
Martin Reinecke committed
50
    _needed_for_hash = ["_distances", "_shape", "_harmonic"]
51

Martin Reinecke's avatar
Martin Reinecke committed
52
    def __init__(self, shape, distances=None, harmonic=False):
Martin Reinecke's avatar
Martin Reinecke committed
53
        super(RGSpace, self).__init__()
54

Martin Reinecke's avatar
Martin Reinecke committed
55
        self._harmonic = bool(harmonic)
Martin Reinecke's avatar
Martin Reinecke committed
56 57 58
        if np.isscalar(shape):
            shape = (shape,)
        self._shape = tuple(int(i) for i in shape)
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
59 60 61 62 63 64 65 66 67 68 69 70 71

        if distances is None:
            if self.harmonic:
                self._distances = (1.,) * len(self._shape)
            else:
                self._distances = tuple(1./s for s in self._shape)
        elif np.isscalar(distances):
            self._distances = (float(distances),) * len(self._shape)
        else:
            temp = np.empty(len(self.shape), dtype=np.float64)
            temp[:] = distances
            self._distances = tuple(temp)

72
        self._dvol = float(reduce(lambda x, y: x*y, self._distances))
Martin Reinecke's avatar
Martin Reinecke committed
73
        self._size = int(reduce(lambda x, y: x*y, self._shape))
Marco Selig's avatar
Marco Selig committed
74

75
    def __repr__(self):
Martin Reinecke's avatar
Martin Reinecke committed
76 77
        return ("RGSpace(shape=%r, distances=%r, harmonic=%r)"
                % (self.shape, self.distances, self.harmonic))
78

79 80 81 82 83 84 85 86 87
    @property
    def harmonic(self):
        return self._harmonic

    @property
    def shape(self):
        return self._shape

    @property
Martin Reinecke's avatar
Martin Reinecke committed
88 89
    def size(self):
        return self._size
90

Martin Reinecke's avatar
Martin Reinecke committed
91
    @property
92 93
    def scalar_dvol(self):
        return self._dvol
94

95
    def get_k_length_array(self):
Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
96 97
        if (not self.harmonic):
            raise NotImplementedError
Martin Reinecke's avatar
Martin Reinecke committed
98
        out = Field((self,), dtype=np.float64)
Martin Reinecke's avatar
Martin Reinecke committed
99 100 101
        oloc = dobj.local_data(out.val)
        ibegin = dobj.ibegin(out.val)
        res = np.arange(oloc.shape[0], dtype=np.float64) + ibegin[0]
Martin Reinecke's avatar
Martin Reinecke committed
102 103
        res = np.minimum(res, self.shape[0]-res)*self.distances[0]
        if len(self.shape) == 1:
Martin Reinecke's avatar
Martin Reinecke committed
104 105
            oloc[()] = res
            return out
Martin Reinecke's avatar
Martin Reinecke committed
106 107
        res *= res
        for i in range(1, len(self.shape)):
Martin Reinecke's avatar
Martin Reinecke committed
108
            tmp = np.arange(oloc.shape[i], dtype=np.float64) + ibegin[i]
Martin Reinecke's avatar
Martin Reinecke committed
109 110 111
            tmp = np.minimum(tmp, self.shape[i]-tmp)*self.distances[i]
            tmp *= tmp
            res = np.add.outer(res, tmp)
Martin Reinecke's avatar
Martin Reinecke committed
112 113
        oloc[()] = np.sqrt(res)
        return out
114

115
    def get_unique_k_lengths(self):
Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
116 117
        if (not self.harmonic):
            raise NotImplementedError
Martin Reinecke's avatar
Martin Reinecke committed
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
        dimensions = len(self.shape)
        if dimensions == 1:  # extra easy
            maxdist = self.shape[0]//2
            return np.arange(maxdist+1, dtype=np.float64) * self.distances[0]
        if np.all(self.distances == self.distances[0]):  # shortcut
            maxdist = np.asarray(self.shape)//2
            tmp = np.sum(maxdist*maxdist)
            tmp = np.zeros(tmp+1, dtype=np.bool)
            t2 = np.arange(maxdist[0]+1, dtype=np.int64)
            t2 *= t2
            for i in range(1, dimensions):
                t3 = np.arange(maxdist[i]+1, dtype=np.int64)
                t3 *= t3
                t2 = np.add.outer(t2, t3)
            tmp[t2] = True
            return np.sqrt(np.nonzero(tmp)[0])*self.distances[0]
        else:  # do it the hard way
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
135
            # FIXME: this needs to improve for MPI. Maybe unique()/gather()?
Martin Reinecke's avatar
Martin Reinecke committed
136 137
            tmp = dobj.to_global_data(self.get_k_length_array().val)
            tmp = np.unique(tmp)
Martin Reinecke's avatar
Martin Reinecke committed
138 139 140 141 142 143 144
            tol = 1e-12*tmp[-1]
            # remove all points that are closer than tol to their right
            # neighbors.
            # I'm appending the last value*2 to the array to treat the
            # rightmost point correctly.
            return tmp[np.diff(np.r_[tmp, 2*tmp[-1]]) > tol]

Martin Reinecke's avatar
Martin Reinecke committed
145 146 147 148
    @staticmethod
    def _kernel(x, sigma):
        tmp = x*x
        tmp *= -2.*np.pi*np.pi*sigma*sigma
149
        exp(tmp, out=tmp)
Martin Reinecke's avatar
Martin Reinecke committed
150 151
        return tmp

152
    def get_fft_smoothing_kernel_function(self, sigma):
Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
153 154
        if (not self.harmonic):
            raise NotImplementedError
Martin Reinecke's avatar
Martin Reinecke committed
155
        return lambda x: self._kernel(x, sigma)
156

Martin Reinecke's avatar
Martin Reinecke committed
157
    def get_default_codomain(self):
Martin Reinecke's avatar
Martin Reinecke committed
158 159 160 161 162 163 164 165
        """Returns a :class:`RGSpace` object representing the (position or
        harmonic) partner domain of `self`, depending on `self.harmonic`.

        Returns
        -------
        RGSpace
            The parter domain
        """
Martin Reinecke's avatar
Martin Reinecke committed
166 167 168 169
        distances = 1. / (np.array(self.shape)*np.array(self.distances))
        return RGSpace(self.shape, distances, not self.harmonic)

    def check_codomain(self, codomain):
Martin Reinecke's avatar
Martin Reinecke committed
170 171 172
        """Raises `TypeError` if `codomain` is not a matching partner domain
        for `self`.
        """
Martin Reinecke's avatar
Martin Reinecke committed
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
        if not isinstance(codomain, RGSpace):
            raise TypeError("domain is not a RGSpace")

        if self.shape != codomain.shape:
            raise AttributeError("The shapes of domain and codomain must be "
                                 "identical.")

        if self.harmonic == codomain.harmonic:
            raise AttributeError("domain.harmonic and codomain.harmonic must "
                                 "not be the same.")

        # Check if the distances match, i.e. dist' = 1 / (num * dist)
        if not np.all(
            np.absolute(np.array(self.shape) *
                        np.array(self.distances) *
Martin Reinecke's avatar
Martin Reinecke committed
188
                        np.array(codomain.distances)-1) < 1e-7):
Martin Reinecke's avatar
Martin Reinecke committed
189 190 191
            raise AttributeError("The grid-distances of domain and codomain "
                                 "do not match.")

192 193
    @property
    def distances(self):
Martin Reinecke's avatar
Martin Reinecke committed
194 195 196
        """tuple of float : Distance between grid points along each axis.
        The n-th entry of the tuple is the distance between neighboring
        grid points along the n-th dimension.
197
        """
198
        return self._distances