power_space.py 9.31 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
#
Martin Reinecke's avatar
Martin Reinecke committed
14
# Copyright(C) 2013-2018 Max-Planck-Society
Theo Steininger's avatar
Theo Steininger committed
15 16 17
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
Theo Steininger's avatar
Theo Steininger committed
18

19
import numpy as np
Martin Reinecke's avatar
Martin Reinecke committed
20
from .structured_domain import StructuredDomain
Martin Reinecke's avatar
Martin Reinecke committed
21
from .. import dobj
Theo Steininger's avatar
Theo Steininger committed
22 23


Martin Reinecke's avatar
Martin Reinecke committed
24
class PowerSpace(StructuredDomain):
Martin Reinecke's avatar
Martin Reinecke committed
25
    """NIFTy class for spaces of power spectra.
Theo Steininger's avatar
Theo Steininger committed
26

Martin Reinecke's avatar
Martin Reinecke committed
27
    A power space is the result of a projection of a harmonic domain where
Martin Reinecke's avatar
Martin Reinecke committed
28 29
    k-modes of equal length get mapped to one power index.

Theo Steininger's avatar
Theo Steininger committed
30 31
    Parameters
    ----------
Martin Reinecke's avatar
Martin Reinecke committed
32
    harmonic_partner : StructuredDomain
Martin Reinecke's avatar
Martin Reinecke committed
33 34
        The harmonic domain of which this is the power space.
    binbounds : None, or tuple of float (default: None)
Martin Reinecke's avatar
Martin Reinecke committed
35 36 37
        if None:
            There will be as many bins as there are distinct k-vector lengths
            in the harmonic partner space.
Martin Reinecke's avatar
Martin Reinecke committed
38
            The `binbounds` property of the PowerSpace will also be None.
Martin Reinecke's avatar
Martin Reinecke committed
39 40 41 42
        else:
            the bin bounds requested for this PowerSpace. The array
            must be sorted and strictly ascending. The first entry is the right
            boundary of the first bin, and the last entry is the left boundary
Martin Reinecke's avatar
Martin Reinecke committed
43 44 45
            of the last bin, i.e. thee will be `len(binbounds)+1` bins in
            total, with the first and last bins reaching to -+infinity,
            respectively.
Theo Steininger's avatar
Theo Steininger committed
46
    """
47

48
    _powerIndexCache = {}
Martin Reinecke's avatar
Martin Reinecke committed
49
    _needed_for_hash = ["_harmonic_partner", "_binbounds"]
50

Martin Reinecke's avatar
Martin Reinecke committed
51
    @staticmethod
Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
52
    def linear_binbounds(nbin, first_bound, last_bound):
Martin Reinecke's avatar
Martin Reinecke committed
53 54
        """Produces linearly spaced bin bounds.

Martin Reinecke's avatar
Martin Reinecke committed
55 56 57 58
        This will produce a binbounds array with nbin-1 entries with
        binbounds[0]=first_bound and binbounds[-1]=last_bound and the remaining
        values equidistantly spaced (in linear scale) between these two.

Martin Reinecke's avatar
Martin Reinecke committed
59
        nbin : int
Martin Reinecke's avatar
Martin Reinecke committed
60
            the number of bins
Martin Reinecke's avatar
Martin Reinecke committed
61
        first_bound, last_bound : float
Martin Reinecke's avatar
Martin Reinecke committed
62 63 64 65 66
            the k values for the right boundary of the first bin and the left
            boundary of the last bin, respectively. They are given in length
            units of the harmonic partner space.
        """
        nbin = int(nbin)
67 68
        if nbin < 3:
            raise ValueError("nbin must be at least 3")
Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
69
        return np.linspace(float(first_bound), float(last_bound), nbin-1)
Martin Reinecke's avatar
Martin Reinecke committed
70 71

    @staticmethod
Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
72
    def logarithmic_binbounds(nbin, first_bound, last_bound):
Martin Reinecke's avatar
Martin Reinecke committed
73 74
        """Produces logarithmically spaced bin bounds.

Martin Reinecke's avatar
Martin Reinecke committed
75 76 77 78 79
        This will produce a binbounds array with nbin-1 entries with
        binbounds[0]=first_bound and binbounds[-1]=last_bound and the remaining
        values equidistantly spaced (in natural logarithmic scale)
        between these two.

Martin Reinecke's avatar
Martin Reinecke committed
80
        nbin : int
Martin Reinecke's avatar
Martin Reinecke committed
81
            the number of bins
Martin Reinecke's avatar
Martin Reinecke committed
82
        first_bound, last_bound : float
Martin Reinecke's avatar
Martin Reinecke committed
83 84 85 86
            the k values for the right boundary of the first bin and the left
            boundary of the last bin, respectively. They are given in length
            units of the harmonic partner space.
        """
Martin Reinecke's avatar
Martin Reinecke committed
87
        nbin = int(nbin)
88 89
        if nbin < 3:
            raise ValueError("nbin must be at least 3")
Martin Reinecke's avatar
Martin Reinecke committed
90 91 92
        return np.logspace(np.log(float(first_bound)),
                           np.log(float(last_bound)),
                           nbin-1, base=np.e)
Martin Reinecke's avatar
Martin Reinecke committed
93

94 95
    @staticmethod
    def useful_binbounds(space, logarithmic, nbin=None):
Martin Reinecke's avatar
Martin Reinecke committed
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
        """Produces bin bounds suitable for a given domain.

        This will produce a binbounds array with `nbin-1` entries, if `nbin` is
        supplied, or the maximum number of entries that does not produce empty
        bins, if `nbin` is not supplied.
        The first and last bin boundary are inferred from `space`.

        space : StructuredDomain
            the domain for which the binbounds will be computed.
        logarithmic : bool
            If True bins will have equal size in linear space; otherwise they
            will have equali size in logarithmic space.
        nbin : int, optional
            the number of bins
            If None, the highest possible number of bins will be used
        """
Martin Reinecke's avatar
Martin Reinecke committed
112
        if not (isinstance(space, StructuredDomain) and space.harmonic):
113 114 115 116 117
            raise ValueError("first argument must be a harmonic space.")
        if logarithmic is None and nbin is None:
            return None
        nbin = None if nbin is None else int(nbin)
        logarithmic = bool(logarithmic)
118
        dists = space.get_unique_k_lengths()
119 120 121 122 123 124 125 126 127 128 129 130
        if len(dists) < 3:
            raise ValueError("Space does not have enough unique k lengths")
        lbound = 0.5*(dists[0]+dists[1])
        rbound = 0.5*(dists[-2]+dists[-1])
        dists[0] = lbound
        dists[-1] = rbound
        if logarithmic:
            dists = np.log(dists)
        binsz_min = np.max(np.diff(dists))
        nbin_max = int((dists[-1]-dists[0])/binsz_min)+2
        if nbin is None:
            nbin = nbin_max
131 132
        if nbin < 3:
            raise ValueError("nbin must be at least 3")
133 134 135 136 137 138 139
        if nbin > nbin_max:
            raise ValueError("nbin is too large")
        if logarithmic:
            return PowerSpace.logarithmic_binbounds(nbin, lbound, rbound)
        else:
            return PowerSpace.linear_binbounds(nbin, lbound, rbound)

Martin Reinecke's avatar
Martin Reinecke committed
140
    def __init__(self, harmonic_partner, binbounds=None):
Martin Reinecke's avatar
Martin Reinecke committed
141
        super(PowerSpace, self).__init__()
142

Martin Reinecke's avatar
Martin Reinecke committed
143
        if not (isinstance(harmonic_partner, StructuredDomain) and
Martin Reinecke's avatar
Martin Reinecke committed
144 145
                harmonic_partner.harmonic):
            raise ValueError("harmonic_partner must be a harmonic space.")
Martin Reinecke's avatar
Martin Reinecke committed
146
        if harmonic_partner.scalar_dvol is None:
Martin Reinecke's avatar
Martin Reinecke committed
147 148
            raise ValueError("harmonic partner must have "
                             "scalar volume factors")
149
        self._harmonic_partner = harmonic_partner
Martin Reinecke's avatar
Martin Reinecke committed
150
        pdvol = harmonic_partner.scalar_dvol
151

Martin Reinecke's avatar
Martin Reinecke committed
152 153
        if binbounds is not None:
            binbounds = tuple(binbounds)
154

Martin Reinecke's avatar
Martin Reinecke committed
155
        key = (harmonic_partner, binbounds)
156
        if self._powerIndexCache.get(key) is None:
157
            k_length_array = self.harmonic_partner.get_k_length_array()
Martin Reinecke's avatar
Martin Reinecke committed
158 159 160 161 162 163
            if binbounds is None:
                tmp = harmonic_partner.get_unique_k_lengths()
                tbb = 0.5*(tmp[:-1]+tmp[1:])
            else:
                tbb = binbounds
            locdat = np.searchsorted(tbb, dobj.local_data(k_length_array.val))
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
164
            temp_pindex = dobj.from_local_data(
165 166
                k_length_array.val.shape, locdat,
                dobj.distaxis(k_length_array.val))
Martin Reinecke's avatar
Martin Reinecke committed
167
            nbin = len(tbb)+1
Martin Reinecke's avatar
Martin Reinecke committed
168 169
            temp_rho = np.bincount(dobj.local_data(temp_pindex).ravel(),
                                   minlength=nbin)
Martin Reinecke's avatar
Martin Reinecke committed
170
            temp_rho = dobj.np_allreduce_sum(temp_rho)
171 172
            if (temp_rho == 0).any():
                raise ValueError("empty bins detected")
Martin Reinecke's avatar
Martin Reinecke committed
173 174 175
            # The explicit conversion to float64 is necessary because bincount
            # sometimes returns its result as an integer array, even when
            # floating-point weights are present ...
176 177
            temp_k_lengths = np.bincount(
                dobj.local_data(temp_pindex).ravel(),
Martin Reinecke's avatar
Martin Reinecke committed
178
                weights=dobj.local_data(k_length_array.val).ravel(),
Martin Reinecke's avatar
Martin Reinecke committed
179
                minlength=nbin).astype(np.float64, copy=False)
Martin Reinecke's avatar
Martin Reinecke committed
180
            temp_k_lengths = dobj.np_allreduce_sum(temp_k_lengths) / temp_rho
Martin Reinecke's avatar
Martin Reinecke committed
181 182
            temp_k_lengths.flags.writeable = False
            dobj.lock(temp_pindex)
Martin Reinecke's avatar
Martin Reinecke committed
183
            temp_dvol = temp_rho*pdvol
Martin Reinecke's avatar
Martin Reinecke committed
184
            temp_dvol.flags.writeable = False
Martin Reinecke's avatar
Martin Reinecke committed
185 186
            self._powerIndexCache[key] = (binbounds, temp_pindex,
                                          temp_k_lengths, temp_dvol)
187

Martin Reinecke's avatar
Martin Reinecke committed
188
        (self._binbounds, self._pindex, self._k_lengths, self._dvol) = \
189 190
            self._powerIndexCache[key]

191
    def __repr__(self):
Martin Reinecke's avatar
stage1  
Martin Reinecke committed
192 193
        return ("PowerSpace(harmonic_partner=%r, binbounds=%r)"
                % (self.harmonic_partner, self._binbounds))
194

195 196
    @property
    def harmonic(self):
Martin Reinecke's avatar
Martin Reinecke committed
197
        """bool : Always False for this class."""
198
        return False
199

200 201
    @property
    def shape(self):
Martin Reinecke's avatar
Martin Reinecke committed
202
        return self.k_lengths.shape
203

204
    @property
Martin Reinecke's avatar
Martin Reinecke committed
205
    def size(self):
206 207
        return self.shape[0]

Martin Reinecke's avatar
Martin Reinecke committed
208
    @property
209
    def scalar_dvol(self):
Martin Reinecke's avatar
Martin Reinecke committed
210 211
        return None

Martin Reinecke's avatar
Martin Reinecke committed
212
    @property
Martin Reinecke's avatar
Martin Reinecke committed
213 214
    def dvol(self):
        return self._dvol
215

216
    @property
217
    def harmonic_partner(self):
Martin Reinecke's avatar
Martin Reinecke committed
218
        """StructuredDomain : the harmonic domain associated with `self`."""
219
        return self._harmonic_partner
220 221

    @property
Martin Reinecke's avatar
Martin Reinecke committed
222
    def binbounds(self):
Martin Reinecke's avatar
Martin Reinecke committed
223 224 225 226
        """None or tuple of float : inner bin boundaries

        The boundaries between bins, starting with the right boundary of the
        first bin, up to the left boundary of the last bin.
Martin Reinecke's avatar
Martin Reinecke committed
227 228

        `None` is used to indicate natural binning.
Martin Reinecke's avatar
Martin Reinecke committed
229
        """
Martin Reinecke's avatar
Martin Reinecke committed
230
        return self._binbounds
231 232 233

    @property
    def pindex(self):
Martin Reinecke's avatar
Martin Reinecke committed
234 235 236
        """data_object : bin indices

        Bin index for every pixel in the harmonic partner.
Theo Steininger's avatar
Theo Steininger committed
237
        """
238 239 240
        return self._pindex

    @property
Martin Reinecke's avatar
Martin Reinecke committed
241
    def k_lengths(self):
Martin Reinecke's avatar
Martin Reinecke committed
242
        """numpy.ndarray(float) : k-vector length for each bin."""
Martin Reinecke's avatar
Martin Reinecke committed
243
        return self._k_lengths