fft_operator_support.py 6.2 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.

from __future__ import division
import numpy as np
Martin Reinecke's avatar
Martin Reinecke committed
21
from .. import utilities
Martin Reinecke's avatar
Martin Reinecke committed
22
from .. import dobj
Martin Reinecke's avatar
Martin Reinecke committed
23
24
from ..field import Field
from ..spaces.gl_space import GLSpace
Martin Reinecke's avatar
Martin Reinecke committed
25

Martin Reinecke's avatar
Martin Reinecke committed
26

Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
27
class Transformation(object):
Martin Reinecke's avatar
Martin Reinecke committed
28
29
30
31
    def __init__(self, pdom, hdom, space):
        self.pdom = pdom
        self.hdom = hdom
        self.space = space
Martin Reinecke's avatar
Martin Reinecke committed
32
33
34


class RGRGTransformation(Transformation):
Martin Reinecke's avatar
Martin Reinecke committed
35
    def __init__(self, pdom, hdom, space):
Martin Reinecke's avatar
Martin Reinecke committed
36
        import pyfftw
Martin Reinecke's avatar
Martin Reinecke committed
37
        super(RGRGTransformation, self).__init__(pdom, hdom, space)
Martin Reinecke's avatar
Martin Reinecke committed
38
        pyfftw.interfaces.cache.enable()
Martin Reinecke's avatar
Martin Reinecke committed
39
40
41
42
43
44
45
        # correct for forward/inverse fft.
        # naively one would set power to 0.5 here in order to
        # apply effectively a factor of 1/sqrt(N) to the field.
        # BUT: the pixel volumes of the domain and codomain are different.
        # Hence, in order to produce the same scalar product, power==1.
        self.fct_p2h = pdom[space].scalar_dvol()
        self.fct_h2p = 1./(pdom[space].scalar_dvol()*hdom[space].dim)
Martin Reinecke's avatar
Martin Reinecke committed
46
47
48
49
50

    @property
    def unitary(self):
        return True

Martin Reinecke's avatar
Martin Reinecke committed
51
    def transform(self, x):
Martin Reinecke's avatar
Martin Reinecke committed
52
53
54
55
56
        """
        RG -> RG transform method.

        Parameters
        ----------
Martin Reinecke's avatar
Martin Reinecke committed
57
58
        x : Field
            The field to be transformed
Martin Reinecke's avatar
Martin Reinecke committed
59
        """
Martin Reinecke's avatar
Martin Reinecke committed
60
        from pyfftw.interfaces.numpy_fft import fftn
Martin Reinecke's avatar
Martin Reinecke committed
61
62
        axes = x.domain.axes[self.space]
        p2h = x.domain == self.pdom
Martin Reinecke's avatar
Martin Reinecke committed
63
        tdom = self.hdom if p2h else self.pdom
Martin Reinecke's avatar
Martin Reinecke committed
64
        oldax = dobj.distaxis(x.val)
65
66
67
68
69
70
71
72
73
74
75
        if oldax not in axes:  # straightforward, no redistribution needed
            ldat = dobj.local_data(x.val)
            ldat = utilities.hartley(ldat, axes=axes)
            tmp = dobj.from_local_data(x.val.shape, ldat, distaxis=oldax)
        else:  # we need redistribution and 1 or 2 FFT steps
            if len(axes) < len(x.shape) or len(axes) == 1:
                # we can use one Hartley pass in between the redistributions
                tmp = dobj.redistribute(x.val, nodist=axes)
                newax = dobj.distaxis(tmp)
                ldat = dobj.local_data(tmp)
                ldat = utilities.hartley(ldat, axes=axes)
Martin Reinecke's avatar
Martin Reinecke committed
76
77
                tmp = dobj.from_local_data(tmp.shape, ldat, distaxis=newax)
                tmp = dobj.redistribute(tmp, dist=oldax)
78
79
80
81
            else:  # two separate, full FFTs needed
                tmp = dobj.redistribute(x.val, nodist=(oldax,))
                newax = dobj.distaxis(tmp)
                ldat = dobj.local_data(tmp)
Martin Reinecke's avatar
Martin Reinecke committed
82
83
84
85
                ldat = fftn(ldat, axes=(oldax,))
                tmp = dobj.from_local_data(tmp.shape, ldat, distaxis=newax)
                tmp = dobj.redistribute(tmp, dist=oldax)
                rem_axes = tuple(i for i in axes if i != oldax)
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
86
                ldat = dobj.local_data(tmp)
Martin Reinecke's avatar
Martin Reinecke committed
87
                ldat = fftn(ldat, axes=rem_axes)
Martin Reinecke's avatar
Martin Reinecke committed
88
                ldat = ldat.real+ldat.imag
Martin Reinecke's avatar
Martin Reinecke committed
89
90
                tmp = dobj.from_local_data(tmp.shape, ldat, distaxis=oldax)
        Tval = Field(tdom, tmp)
Martin Reinecke's avatar
Martin Reinecke committed
91
92
93
        fct = self.fct_p2h if p2h else self.fct_h2p
        if fct != 1:
            Tval *= fct
Martin Reinecke's avatar
Martin Reinecke committed
94

Martin Reinecke's avatar
Martin Reinecke committed
95
        return Tval
Martin Reinecke's avatar
Martin Reinecke committed
96
97


98
class SphericalTransformation(Transformation):
Martin Reinecke's avatar
Martin Reinecke committed
99
100
    def __init__(self, pdom, hdom, space):
        super(SphericalTransformation, self).__init__(pdom, hdom, space)
Martin Reinecke's avatar
Martin Reinecke committed
101
102
        from pyHealpix import sharpjob_d

Martin Reinecke's avatar
Martin Reinecke committed
103
        self.lmax = self.hdom[self.space].lmax
104
        self.mmax = self.hdom[self.space].mmax
Martin Reinecke's avatar
Martin Reinecke committed
105
        self.sjob = sharpjob_d()
106
        self.sjob.set_triangular_alm_info(self.lmax, self.mmax)
Martin Reinecke's avatar
Martin Reinecke committed
107
108
109
        if isinstance(self.pdom[self.space], GLSpace):
            self.sjob.set_Gauss_geometry(self.pdom[self.space].nlat,
                                         self.pdom[self.space].nlon)
Martin Reinecke's avatar
Martin Reinecke committed
110
        else:
Martin Reinecke's avatar
Martin Reinecke committed
111
            self.sjob.set_Healpix_geometry(self.pdom[self.space].nside)
Martin Reinecke's avatar
Martin Reinecke committed
112
113
114
115
116

    @property
    def unitary(self):
        return False

Martin Reinecke's avatar
Martin Reinecke committed
117
118
    def _slice_p2h(self, inp):
        rr = self.sjob.map2alm(inp)
119
120
121
122
123
124
125
        assert len(rr) == ((self.mmax+1)*(self.mmax+2))//2 + \
                          (self.mmax+1)*(self.lmax-self.mmax)
        res = np.empty(2*len(rr)-self.lmax-1, dtype=rr[0].real.dtype)
        res[0:self.lmax+1] = rr[0:self.lmax+1].real
        res[self.lmax+1::2] = np.sqrt(2)*rr[self.lmax+1:].real
        res[self.lmax+2::2] = np.sqrt(2)*rr[self.lmax+1:].imag
        return res
Martin Reinecke's avatar
Martin Reinecke committed
126

Martin Reinecke's avatar
Martin Reinecke committed
127
    def _slice_h2p(self, inp):
128
129
130
131
132
133
134
135
136
137
        res = np.empty((len(inp)+self.lmax+1)//2, dtype=(inp[0]*1j).dtype)
        assert len(res) == ((self.mmax+1)*(self.mmax+2))//2 + \
                           (self.mmax+1)*(self.lmax-self.mmax)
        res[0:self.lmax+1] = inp[0:self.lmax+1]
        res[self.lmax+1:] = np.sqrt(0.5)*(inp[self.lmax+1::2] +
                                          1j*inp[self.lmax+2::2])
        return self.sjob.alm2map(res)

    def transform(self, x):
        axes = x.domain.axes[self.space]
Martin Reinecke's avatar
Martin Reinecke committed
138
139
        axis = axes[0]
        tval = x.val
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
140
        if dobj.distaxis(tval) == axis:
Martin Reinecke's avatar
Martin Reinecke committed
141
            tval = dobj.redistribute(tval, nodist=(axis,))
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
142
        distaxis = dobj.distaxis(tval)
Martin Reinecke's avatar
Martin Reinecke committed
143

Martin Reinecke's avatar
Martin Reinecke committed
144
        p2h = x.domain == self.pdom
Martin Reinecke's avatar
Martin Reinecke committed
145
146
        tdom = self.hdom if p2h else self.pdom
        func = self._slice_p2h if p2h else self._slice_h2p
Martin Reinecke's avatar
Martin Reinecke committed
147
        idat = dobj.local_data(tval)
Martin Reinecke's avatar
Martin Reinecke committed
148
149
150
151
152
153
154
155
        odat = np.empty(dobj.local_shape(tdom.shape, distaxis=distaxis),
                        dtype=x.dtype)
        for slice in utilities.get_slice_list(idat.shape, axes):
            odat[slice] = func(idat[slice])
        odat = dobj.from_local_data(tdom.shape, odat, distaxis)
        if distaxis != dobj.distaxis(x.val):
            odat = dobj.redistribute(odat, dist=dobj.distaxis(x.val))
        return Field(tdom, odat)