field.py 47.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13 14 15 16 17
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
18

csongor's avatar
csongor committed
19
from __future__ import division
20

21
import ast
22
import itertools
csongor's avatar
csongor committed
23 24
import numpy as np

Theo Steininger's avatar
Theo Steininger committed
25 26
from keepers import Versionable,\
                    Loggable
Jait Dixit's avatar
Jait Dixit committed
27

28
from d2o import distributed_data_object,\
29
    STRATEGIES as DISTRIBUTION_STRATEGIES
csongor's avatar
csongor committed
30

31
from nifty.config import nifty_configuration as gc
csongor's avatar
csongor committed
32

33
from nifty.domain_object import DomainObject
34

35
from nifty.spaces.power_space import PowerSpace
csongor's avatar
csongor committed
36

csongor's avatar
csongor committed
37
import nifty.nifty_utilities as utilities
38 39
from nifty.random import Random

csongor's avatar
csongor committed
40

Jait Dixit's avatar
Jait Dixit committed
41
class Field(Loggable, Versionable, object):
Theo Steininger's avatar
Theo Steininger committed
42 43 44
    """ The discrete representation of a continuous field over multiple spaces.

    In NIFTY, Fields are used to store data arrays and carry all the needed
45
    metainformation (i.e. the domain) for operators to be able to work on them.
Theo Steininger's avatar
Theo Steininger committed
46 47
    In addition Field has methods to work with power-spectra.

48 49 50 51
    Parameters
    ----------
    domain : DomainObject
        One of the space types NIFTY supports. RGSpace, GLSpace, HPSpace,
Theo Steininger's avatar
Theo Steininger committed
52
        LMSpace or PowerSpace. It might also be a FieldArray, which is
53
        an unstructured domain.
Theo Steininger's avatar
Theo Steininger committed
54

55 56 57 58
    val : scalar, numpy.ndarray, distributed_data_object, Field
        The values the array should contain after init. A scalar input will
        fill the whole array with this scalar. If an array is provided the
        array's dimensions must match the domain's.
Theo Steininger's avatar
Theo Steininger committed
59

60 61
    dtype : type
        A numpy.type. Most common are int, float and complex.
Theo Steininger's avatar
Theo Steininger committed
62

63 64 65 66 67 68
    distribution_strategy: optional[{'fftw', 'equal', 'not', 'freeform'}]
        Specifies which distributor will be created and used.
        'fftw'      uses the distribution strategy of pyfftw,
        'equal'     tries to  distribute the data as uniform as possible
        'not'       does not distribute the data at all
        'freeform'  distribute the data according to the given local data/shape
Theo Steininger's avatar
Theo Steininger committed
69

70 71 72 73 74
    copy: boolean

    Attributes
    ----------
    val : distributed_data_object
Theo Steininger's avatar
Theo Steininger committed
75

76 77 78 79 80 81 82
    domain : DomainObject
        See Parameters.
    domain_axes : tuple of tuples
        Enumerates the axes of the Field
    dtype : type
        Contains the datatype stored in the Field.
    distribution_strategy : string
Theo Steininger's avatar
Theo Steininger committed
83 84
        Name of the used distribution_strategy.

85 86 87 88 89 90 91
    Raise
    -----
    TypeError
        Raised if
            *the given domain contains something that is not a DomainObject
             instance
            *val is an array that has a different dimension than the domain
Theo Steininger's avatar
Theo Steininger committed
92

93 94 95 96 97 98 99 100 101 102 103
    Examples
    --------
    >>> a = Field(RGSpace([4,5]),val=2)
    >>> a.val
    <distributed_data_object>
    array([[2, 2, 2, 2, 2],
           [2, 2, 2, 2, 2],
           [2, 2, 2, 2, 2],
           [2, 2, 2, 2, 2]])
    >>> a.dtype
    dtype('int64')
Theo Steininger's avatar
Theo Steininger committed
104

105 106 107 108 109
    See Also
    --------
    distributed_data_object

    """
110

Theo Steininger's avatar
Theo Steininger committed
111
    # ---Initialization methods---
112

113
    def __init__(self, domain=None, val=None, dtype=None,
114
                 distribution_strategy=None, copy=False):
csongor's avatar
csongor committed
115

116
        self.domain = self._parse_domain(domain=domain, val=val)
117
        self.domain_axes = self._get_axes_tuple(self.domain)
csongor's avatar
csongor committed
118

Theo Steininger's avatar
Theo Steininger committed
119
        self.dtype = self._infer_dtype(dtype=dtype,
120
                                       val=val)
121

122 123 124
        self.distribution_strategy = self._parse_distribution_strategy(
                                distribution_strategy=distribution_strategy,
                                val=val)
csongor's avatar
csongor committed
125

126 127 128 129
        if val is None:
            self._val = None
        else:
            self.set_val(new_val=val, copy=copy)
csongor's avatar
csongor committed
130

131
    def _parse_domain(self, domain, val=None):
132
        if domain is None:
133 134 135 136
            if isinstance(val, Field):
                domain = val.domain
            else:
                domain = ()
137
        elif isinstance(domain, DomainObject):
138
            domain = (domain,)
139 140 141
        elif not isinstance(domain, tuple):
            domain = tuple(domain)

csongor's avatar
csongor committed
142
        for d in domain:
143
            if not isinstance(d, DomainObject):
144 145
                raise TypeError(
                    "Given domain contains something that is not a "
146
                    "DomainObject instance.")
csongor's avatar
csongor committed
147 148
        return domain

Theo Steininger's avatar
Theo Steininger committed
149 150 151 152 153 154 155 156 157 158
    def _get_axes_tuple(self, things_with_shape, start=0):
        i = start
        axes_list = []
        for thing in things_with_shape:
            l = []
            for j in range(len(thing.shape)):
                l += [i]
                i += 1
            axes_list += [tuple(l)]
        return tuple(axes_list)
159

160
    def _infer_dtype(self, dtype, val):
csongor's avatar
csongor committed
161
        if dtype is None:
162
            try:
163
                dtype = val.dtype
164
            except AttributeError:
Theo Steininger's avatar
Theo Steininger committed
165 166 167
                try:
                    if val is None:
                        raise TypeError
168
                    dtype = np.result_type(val)
Theo Steininger's avatar
Theo Steininger committed
169
                except(TypeError):
170
                    dtype = np.dtype(gc['default_field_dtype'])
Theo Steininger's avatar
Theo Steininger committed
171
        else:
172
            dtype = np.dtype(dtype)
173

174 175
        dtype = np.result_type(dtype, np.float)

Theo Steininger's avatar
Theo Steininger committed
176
        return dtype
177

178 179
    def _parse_distribution_strategy(self, distribution_strategy, val):
        if distribution_strategy is None:
180
            if isinstance(val, distributed_data_object):
181
                distribution_strategy = val.distribution_strategy
182
            elif isinstance(val, Field):
183
                distribution_strategy = val.distribution_strategy
184
            else:
Martin Reinecke's avatar
Martin Reinecke committed
185
                #self.logger.debug("distribution_strategy set to default!")
186
                distribution_strategy = gc['default_distribution_strategy']
187
        elif distribution_strategy not in DISTRIBUTION_STRATEGIES['global']:
188 189 190
            raise ValueError(
                    "distribution_strategy must be a global-type "
                    "strategy.")
191
        return distribution_strategy
192 193

    # ---Factory methods---
194

195
    @classmethod
196
    def from_random(cls, random_type, domain=None, dtype=None,
197
                    distribution_strategy=None, **kwargs):
198 199 200 201 202
        """ Draws a random field with the given parameters.

        Parameters
        ----------
        cls : class
Theo Steininger's avatar
Theo Steininger committed
203

204 205 206
        random_type : String
            'pm1', 'normal', 'uniform' are the supported arguments for this
            method.
Theo Steininger's avatar
Theo Steininger committed
207

208 209
        domain : DomainObject
            The domain of the output random field
Theo Steininger's avatar
Theo Steininger committed
210

211 212
        dtype : type
            The datatype of the output random field
Theo Steininger's avatar
Theo Steininger committed
213

214 215
        distribution_strategy : all supported distribution strategies
            The distribution strategy of the output random field
Theo Steininger's avatar
Theo Steininger committed
216

217 218 219 220 221 222 223
        Returns
        -------
        out : Field
            The output object.

        See Also
        --------
224
        power_synthesize
Theo Steininger's avatar
Theo Steininger committed
225

226 227

        """
Theo Steininger's avatar
Theo Steininger committed
228

229
        # create a initially empty field
230
        f = cls(domain=domain, dtype=dtype,
231
                distribution_strategy=distribution_strategy)
232 233 234 235 236 237 238

        # now use the processed input in terms of f in order to parse the
        # random arguments
        random_arguments = cls._parse_random_arguments(random_type=random_type,
                                                       f=f,
                                                       **kwargs)

Martin Reinecke's avatar
Martin Reinecke committed
239
        # extract the distributed_data_object from f and apply the appropriate
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
        # random number generator to it
        sample = f.get_val(copy=False)
        generator_function = getattr(Random, random_type)
        sample.apply_generator(
            lambda shape: generator_function(dtype=f.dtype,
                                             shape=shape,
                                             **random_arguments))
        return f

    @staticmethod
    def _parse_random_arguments(random_type, f, **kwargs):
        if random_type == "pm1":
            random_arguments = {}

        elif random_type == "normal":
            mean = kwargs.get('mean', 0)
            std = kwargs.get('std', 1)
            random_arguments = {'mean': mean,
                                'std': std}

        elif random_type == "uniform":
            low = kwargs.get('low', 0)
            high = kwargs.get('high', 1)
            random_arguments = {'low': low,
                                'high': high}

csongor's avatar
csongor committed
266
        else:
267 268
            raise KeyError(
                "unsupported random key '" + str(random_type) + "'.")
csongor's avatar
csongor committed
269

270
        return random_arguments
csongor's avatar
csongor committed
271

272 273
    # ---Powerspectral methods---

Martin Reinecke's avatar
Martin Reinecke committed
274
    def power_analyze(self, spaces=None, logarithmic=None, nbin=None,
275
                      binbounds=None, keep_phase_information=False):
Theo Steininger's avatar
Theo Steininger committed
276
        """ Computes the square root power spectrum for a subspace of `self`.
Theo Steininger's avatar
Theo Steininger committed
277

Theo Steininger's avatar
Theo Steininger committed
278 279 280
        Creates a PowerSpace for the space addressed by `spaces` with the given
        binning and computes the power spectrum as a Field over this
        PowerSpace. This can only be done if the subspace to  be analyzed is a
281
        harmonic space. The resulting field has the same units as the initial
Theo Steininger's avatar
Theo Steininger committed
282
        field, corresponding to the square root of the power spectrum.
283 284 285

        Parameters
        ----------
Theo Steininger's avatar
Theo Steininger committed
286 287 288 289 290
        spaces : int *optional*
            The subspace for which the powerspectrum shall be computed
            (default : None).
        logarithmic : boolean *optional*
            True if the output PowerSpace should use logarithmic binning.
Martin Reinecke's avatar
Martin Reinecke committed
291
            {default : None}
Theo Steininger's avatar
Theo Steininger committed
292 293 294 295 296 297
        nbin : int *optional*
            The number of bins the resulting PowerSpace shall have
            (default : None).
            if nbin==None : maximum number of bins is used
        binbounds : array-like *optional*
            Inner bounds of the bins (default : None).
Martin Reinecke's avatar
Martin Reinecke committed
298 299
            Overrides nbin and logarithmic.
            if binbounds==None : bins are inferred.
300 301 302 303 304 305 306 307 308 309
        keep_phase_information : boolean, *optional*
            If False, return a real-valued result containing the power spectrum
            of the input Field.
            If True, return a complex-valued result whose real component
            contains the power spectrum computed from the real part of the
            input Field, and whose imaginary component contains the power
            spectrum computed from the imaginary part of the input Field.
            The absolute value of this result should be identical to the output
            of power_analyze with keep_phase_information=False.
            (default : False).
Theo Steininger's avatar
Theo Steininger committed
310

311 312 313 314
        Raise
        -----
        ValueError
            Raised if
Theo Steininger's avatar
Theo Steininger committed
315 316
                *len(domain) is != 1 when spaces==None
                *len(spaces) is != 1 if not None
317
                *the analyzed space is not harmonic
Theo Steininger's avatar
Theo Steininger committed
318

319 320
        Returns
        -------
Theo Steininger's avatar
Theo Steininger committed
321
        out : Field
322 323 324 325 326 327
            The output object. It's domain is a PowerSpace and it contains
            the power spectrum of 'self's field.

        See Also
        --------
        power_synthesize, PowerSpace
Theo Steininger's avatar
Theo Steininger committed
328

329
        """
Theo Steininger's avatar
Theo Steininger committed
330

Theo Steininger's avatar
Theo Steininger committed
331
        # check if all spaces in `self.domain` are either harmonic or
332 333 334
        # power_space instances
        for sp in self.domain:
            if not sp.harmonic and not isinstance(sp, PowerSpace):
Theo Steininger's avatar
Theo Steininger committed
335
                self.logger.info(
336
                    "Field has a space in `domain` which is neither "
337 338 339
                    "harmonic nor a PowerSpace.")

        # check if the `spaces` input is valid
340 341
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
        if spaces is None:
342
            spaces = range(len(self.domain))
343 344

        if len(spaces) == 0:
345 346
            raise ValueError(
                "No space for analysis specified.")
347

348 349 350 351 352 353 354 355 356 357 358 359 360
        if keep_phase_information:
            parts_val = self._hermitian_decomposition(
                                              domain=self.domain,
                                              val=self.val,
                                              spaces=spaces,
                                              domain_axes=self.domain_axes,
                                              preserve_gaussian_variance=False)
            parts = [self.copy_empty().set_val(part_val, copy=False)
                     for part_val in parts_val]
        else:
            parts = [self]

        parts = [abs(part)**2 for part in parts]
361 362

        for space_index in spaces:
363 364
            parts = [self._single_power_analyze(
                                work_field=part,
365 366 367
                                space_index=space_index,
                                logarithmic=logarithmic,
                                nbin=nbin,
368 369
                                binbounds=binbounds)
                     for part in parts]
370

371 372 373 374 375 376
        if keep_phase_information:
            result_field = parts[0] + 1j*parts[1]
        else:
            result_field = parts[0]

        return result_field
377 378 379

    @classmethod
    def _single_power_analyze(cls, work_field, space_index, logarithmic, nbin,
380
                              binbounds):
381

382
        if not work_field.domain[space_index].harmonic:
383 384
            raise ValueError(
                "The analyzed space must be harmonic.")
385

386 387 388 389 390 391
        # Create the target PowerSpace instance:
        # If the associated signal-space field was real, we extract the
        # hermitian and anti-hermitian parts of `self` and put them
        # into the real and imaginary parts of the power spectrum.
        # If it was complex, all the power is put into a real power spectrum.

392
        distribution_strategy = \
393 394
            work_field.val.get_axes_local_distribution_strategy(
                work_field.domain_axes[space_index])
395

396
        harmonic_domain = work_field.domain[space_index]
397
        power_domain = PowerSpace(harmonic_partner=harmonic_domain,
398
                                  distribution_strategy=distribution_strategy,
Theo Steininger's avatar
Theo Steininger committed
399 400
                                  logarithmic=logarithmic, nbin=nbin,
                                  binbounds=binbounds)
401

402 403
        power_spectrum = cls._calculate_power_spectrum(
                                field_val=work_field.val,
Martin Reinecke's avatar
Martin Reinecke committed
404
                                pdomain=power_domain,
405
                                axes=work_field.domain_axes[space_index])
406 407

        # create the result field and put power_spectrum into it
408
        result_domain = list(work_field.domain)
409
        result_domain[space_index] = power_domain
410
        result_dtype = power_spectrum.dtype
411

412
        result_field = work_field.copy_empty(
413
                   domain=result_domain,
414
                   dtype=result_dtype,
415
                   distribution_strategy=power_spectrum.distribution_strategy)
416 417 418 419
        result_field.set_val(new_val=power_spectrum, copy=False)

        return result_field

420
    @classmethod
Martin Reinecke's avatar
Martin Reinecke committed
421
    def _calculate_power_spectrum(cls, field_val, pdomain, axes=None):
422

Martin Reinecke's avatar
Martin Reinecke committed
423 424 425
        pindex = pdomain.pindex
        # MR FIXME: how about iterating over slices, instead of replicating
        # pindex? Would save memory and probably isn't slower.
426
        if axes is not None:
427 428 429 430 431 432
            pindex = cls._shape_up_pindex(
                            pindex=pindex,
                            target_shape=field_val.shape,
                            target_strategy=field_val.distribution_strategy,
                            axes=axes)
        power_spectrum = pindex.bincount(weights=field_val,
433
                                         axis=axes)
Martin Reinecke's avatar
Martin Reinecke committed
434
        rho = pdomain.rho
435 436 437 438 439 440 441 442
        if axes is not None:
            new_rho_shape = [1, ] * len(power_spectrum.shape)
            new_rho_shape[axes[0]] = len(rho)
            rho = rho.reshape(new_rho_shape)
        power_spectrum /= rho

        return power_spectrum

443 444
    @staticmethod
    def _shape_up_pindex(pindex, target_shape, target_strategy, axes):
445 446
        if pindex.distribution_strategy not in \
                DISTRIBUTION_STRATEGIES['global']:
447
            raise ValueError("pindex's distribution strategy must be "
448 449 450 451 452 453
                             "global-type")

        if pindex.distribution_strategy in DISTRIBUTION_STRATEGIES['slicing']:
            if ((0 not in axes) or
                    (target_strategy is not pindex.distribution_strategy)):
                raise ValueError(
454
                    "A slicing distributor shall not be reshaped to "
455 456 457 458 459 460 461 462 463 464 465 466 467
                    "something non-sliced.")

        semiscaled_shape = [1, ] * len(target_shape)
        for i in axes:
            semiscaled_shape[i] = target_shape[i]
        local_data = pindex.get_local_data(copy=False)
        semiscaled_local_data = local_data.reshape(semiscaled_shape)
        result_obj = pindex.copy_empty(global_shape=target_shape,
                                       distribution_strategy=target_strategy)
        result_obj.set_full_data(semiscaled_local_data, copy=False)

        return result_obj

468 469
    def power_synthesize(self, spaces=None, real_power=True, real_signal=True,
                         mean=None, std=None):
Theo Steininger's avatar
Theo Steininger committed
470
        """ Yields a sampled field with `self`**2 as its power spectrum.
Theo Steininger's avatar
Theo Steininger committed
471

Theo Steininger's avatar
Theo Steininger committed
472 473
        This method draws a Gaussian random field in the harmonic partner
        domain of this fields domains, using this field as power spectrum.
Theo Steininger's avatar
Theo Steininger committed
474

475 476 477
        Parameters
        ----------
        spaces : {tuple, int, None} *optional*
Theo Steininger's avatar
Theo Steininger committed
478 479 480
            Specifies the subspace containing all the PowerSpaces which
            should be converted (default : None).
            if spaces==None : Tries to convert the whole domain.
481
        real_power : boolean *optional*
Theo Steininger's avatar
Theo Steininger committed
482 483
            Determines whether the power spectrum is treated as intrinsically
            real or complex (default : True).
484
        real_signal : boolean *optional*
Theo Steininger's avatar
Theo Steininger committed
485 486 487 488 489 490
            True will result in a purely real signal-space field
            (default : True).
        mean : float *optional*
            The mean of the Gaussian noise field which is used for the Field
            synthetization (default : None).
            if mean==None : mean will be set to 0
491
        std : float *optional*
Theo Steininger's avatar
Theo Steininger committed
492 493 494
            The standard deviation of the Gaussian noise field which is used
            for the Field synthetization (default : None).
            if std==None : std will be set to 1
Theo Steininger's avatar
Theo Steininger committed
495

496 497 498 499
        Returns
        -------
        out : Field
            The output object. A random field created with the power spectrum
Theo Steininger's avatar
Theo Steininger committed
500
            stored in the `spaces` in `self`.
501

Theo Steininger's avatar
Theo Steininger committed
502 503 504 505 506 507
        Notes
        -----
        For this the spaces specified by `spaces` must be a PowerSpace.
        This expects this field to be the square root of a power spectrum, i.e.
        to have the unit of the field to be sampled.

508 509 510
        See Also
        --------
        power_analyze
Theo Steininger's avatar
Theo Steininger committed
511 512 513 514 515

        Raises
        ------
        ValueError : If domain specified by `spaces` is not a PowerSpace.

516
        """
Theo Steininger's avatar
Theo Steininger committed
517

518 519 520
        # check if the `spaces` input is valid
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))

Theo Steininger's avatar
Theo Steininger committed
521 522 523
        if spaces is None:
            spaces = range(len(self.domain))

524 525 526 527 528
        for power_space_index in spaces:
            power_space = self.domain[power_space_index]
            if not isinstance(power_space, PowerSpace):
                raise ValueError("A PowerSpace is needed for field "
                                 "synthetization.")
529 530 531

        # create the result domain
        result_domain = list(self.domain)
532 533
        for power_space_index in spaces:
            power_space = self.domain[power_space_index]
534
            harmonic_domain = power_space.harmonic_partner
535
            result_domain[power_space_index] = harmonic_domain
536 537 538

        # create random samples: one or two, depending on whether the
        # power spectrum is real or complex
539
        if real_power:
540
            result_list = [None]
541 542
        else:
            result_list = [None, None]
543

544 545
        result_list = [self.__class__.from_random(
                             'normal',
546 547 548
                             mean=mean,
                             std=std,
                             domain=result_domain,
549
                             dtype=np.complex,
550
                             distribution_strategy=self.distribution_strategy)
551 552 553 554 555 556
                       for x in result_list]

        # from now on extract the values from the random fields for further
        # processing without killing the fields.
        # if the signal-space field should be real, hermitianize the field
        # components
557 558

        spec = self.val.get_full_data()
559 560
        spec = np.sqrt(spec)

561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
        for power_space_index in spaces:
            spec = self._spec_to_rescaler(spec, result_list, power_space_index)
        local_rescaler = spec

        result_val_list = [x.val for x in result_list]

        # apply the rescaler to the random fields
        result_val_list[0].apply_scalar_function(
                                            lambda x: x * local_rescaler.real,
                                            inplace=True)

        if not real_power:
            result_val_list[1].apply_scalar_function(
                                            lambda x: x * local_rescaler.imag,
                                            inplace=True)

577
        if real_signal:
578
            result_val_list = [self._hermitian_decomposition(
579 580 581 582 583
                                            result_domain,
                                            result_val,
                                            spaces,
                                            result_list[0].domain_axes,
                                            preserve_gaussian_variance=True)[0]
584
                               for result_val in result_val_list]
585 586 587 588 589 590 591

        # store the result into the fields
        [x.set_val(new_val=y, copy=False) for x, y in
            zip(result_list, result_val_list)]

        if real_power:
            result = result_list[0]
592
        else:
593 594 595 596
            result = result_list[0] + 1j*result_list[1]

        return result

597
    @staticmethod
598 599
    def _hermitian_decomposition(domain, val, spaces, domain_axes,
                                 preserve_gaussian_variance=False):
600 601 602 603 604 605 606 607 608

        flipped_val = val
        for space in spaces:
            flipped_val = domain[space].hermitianize_inverter(
                                                    x=flipped_val,
                                                    axes=domain_axes[space])
        flipped_val = flipped_val.conjugate()
        h = (val + flipped_val)/2.
        a = val - h
609 610

        # correct variance
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
        if preserve_gaussian_variance:
            h *= np.sqrt(2)
            a *= np.sqrt(2)

            if not issubclass(val.dtype.type, np.complexfloating):
                # in principle one must not correct the variance for the fixed
                # points of the hermitianization. However, for a complex field
                # the input field loses half of its power at its fixed points
                # in the `hermitian` part. Hence, here a factor of sqrt(2) is
                # also necessary!
                # => The hermitianization can be done on a space level since
                # either nothing must be done (LMSpace) or ALL points need a
                # factor of sqrt(2)
                # => use the preserve_gaussian_variance flag in the
                # hermitian_decomposition method above.

                # This code is for educational purposes:
                fixed_points = [domain[i].hermitian_fixed_points()
                                for i in spaces]
                fixed_points = [[fp] if fp is None else fp
                                for fp in fixed_points]

                for product_point in itertools.product(*fixed_points):
                    slice_object = np.array((slice(None), )*len(val.shape),
                                            dtype=np.object)
                    for i, sp in enumerate(spaces):
                        point_component = product_point[i]
                        if point_component is None:
                            point_component = slice(None)
                        slice_object[list(domain_axes[sp])] = point_component

                    slice_object = tuple(slice_object)
                    h[slice_object] /= np.sqrt(2)
                    a[slice_object] /= np.sqrt(2)
645 646
        return (h, a)

647 648
    def _spec_to_rescaler(self, spec, result_list, power_space_index):
        power_space = self.domain[power_space_index]
649 650 651

        # weight the random fields with the power spectrum
        # therefore get the pindex from the power space
652
        pindex = power_space.pindex
653 654 655 656 657 658 659
        # take the local data from pindex. This data must be compatible to the
        # local data of the field given the slice of the PowerSpace
        local_distribution_strategy = \
            result_list[0].val.get_axes_local_distribution_strategy(
                result_list[0].domain_axes[power_space_index])

        if pindex.distribution_strategy is not local_distribution_strategy:
660
            self.logger.warn(
Martin Reinecke's avatar
Martin Reinecke committed
661
                "The distribution_strategy of pindex does not fit the "
662 663 664 665 666 667 668
                "slice_local distribution strategy of the synthesized field.")

        # Now use numpy advanced indexing in order to put the entries of the
        # power spectrum into the appropriate places of the pindex array.
        # Do this for every 'pindex-slice' in parallel using the 'slice(None)'s
        local_pindex = pindex.get_local_data(copy=False)

669 670 671 672 673
        local_blow_up = [slice(None)]*len(spec.shape)
        # it is important to count from behind, since spec potentially grows
        # with every iteration
        index = self.domain_axes[power_space_index][0]-len(self.shape)
        local_blow_up[index] = local_pindex
674
        # here, the power_spectrum is distributed into the new shape
675 676
        local_rescaler = spec[local_blow_up]
        return local_rescaler
677

Theo Steininger's avatar
Theo Steininger committed
678
    # ---Properties---
679

Theo Steininger's avatar
Theo Steininger committed
680
    def set_val(self, new_val=None, copy=False):
Theo Steininger's avatar
Theo Steininger committed
681
        """ Sets the fields distributed_data_object.
682 683 684

        Parameters
        ----------
Theo Steininger's avatar
Theo Steininger committed
685
        new_val : scalar, array-like, Field, None *optional*
686 687
            The values to be stored in the field.
            {default : None}
Theo Steininger's avatar
Theo Steininger committed
688

689
        copy : boolean, *optional*
Theo Steininger's avatar
Theo Steininger committed
690 691
            If False, Field tries to not copy the input data but use it
            directly.
692 693 694 695 696 697
            {default : False}
        See Also
        --------
        val

        """
Theo Steininger's avatar
Theo Steininger committed
698

699 700
        new_val = self.cast(new_val)
        if copy:
Theo Steininger's avatar
Theo Steininger committed
701 702
            new_val = new_val.copy()
        self._val = new_val
703
        return self
csongor's avatar
csongor committed
704

705
    def get_val(self, copy=False):
Theo Steininger's avatar
Theo Steininger committed
706
        """ Returns the distributed_data_object associated with this Field.
707 708 709 710

        Parameters
        ----------
        copy : boolean
Theo Steininger's avatar
Theo Steininger committed
711 712
            If true, a copy of the Field's underlying distributed_data_object
            is returned.
Theo Steininger's avatar
Theo Steininger committed
713

714 715 716 717 718 719 720 721 722
        Returns
        -------
        out : distributed_data_object

        See Also
        --------
        val

        """
Theo Steininger's avatar
Theo Steininger committed
723

724 725 726
        if self._val is None:
            self.set_val(None)

727
        if copy:
Theo Steininger's avatar
Theo Steininger committed
728
            return self._val.copy()
729
        else:
Theo Steininger's avatar
Theo Steininger committed
730
            return self._val
csongor's avatar
csongor committed
731

Theo Steininger's avatar
Theo Steininger committed
732 733
    @property
    def val(self):
Theo Steininger's avatar
Theo Steininger committed
734
        """ Returns the distributed_data_object associated with this Field.
Theo Steininger's avatar
Theo Steininger committed
735

736 737 738 739 740 741 742 743 744
        Returns
        -------
        out : distributed_data_object

        See Also
        --------
        get_val

        """
Theo Steininger's avatar
Theo Steininger committed
745

746
        return self.get_val(copy=False)
csongor's avatar
csongor committed
747

Theo Steininger's avatar
Theo Steininger committed
748 749
    @val.setter
    def val(self, new_val):
750
        self.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
751

752 753
    @property
    def shape(self):
Theo Steininger's avatar
Theo Steininger committed
754
        """ Returns the total shape of the Field's data array.
Theo Steininger's avatar
Theo Steininger committed
755

756 757 758
        Returns
        -------
        out : tuple
Martin Reinecke's avatar
Martin Reinecke committed
759
            The output object. The tuple contains the dimensions of the spaces
760 761 762 763 764 765 766
            in domain.

        See Also
        --------
        dim

        """
Theo Steininger's avatar
Theo Steininger committed
767

768
        shape_tuple = tuple(sp.shape for sp in self.domain)
769 770 771 772
        try:
            global_shape = reduce(lambda x, y: x + y, shape_tuple)
        except TypeError:
            global_shape = ()
csongor's avatar
csongor committed
773

774
        return global_shape
csongor's avatar
csongor committed
775

776 777
    @property
    def dim(self):
Theo Steininger's avatar
Theo Steininger committed
778
        """ Returns the total number of pixel-dimensions the field has.
Theo Steininger's avatar
Theo Steininger committed
779

Theo Steininger's avatar
Theo Steininger committed
780
        Effectively, all values from shape are multiplied.
Theo Steininger's avatar
Theo Steininger committed
781

782 783 784 785 786 787 788 789 790 791
        Returns
        -------
        out : int
            The dimension of the Field.

        See Also
        --------
        shape

        """
Theo Steininger's avatar
Theo Steininger committed
792

793
        dim_tuple = tuple(sp.dim for sp in self.domain)
Theo Steininger's avatar
Theo Steininger committed
794 795 796 797
        try:
            return reduce(lambda x, y: x * y, dim_tuple)
        except TypeError:
            return 0
csongor's avatar
csongor committed
798

799 800
    @property
    def dof(self):
Theo Steininger's avatar
Theo Steininger committed
801 802 803 804 805 806
        """ Returns the total number of degrees of freedom the Field has. For
        real Fields this is equal to `self.dim`. For complex Fields it is
        2*`self.dim`.

        """

Theo Steininger's avatar
Theo Steininger committed
807 808 809 810 811 812 813
        dof = self.dim
        if issubclass(self.dtype.type, np.complexfloating):
            dof *= 2
        return dof

    @property
    def total_volume(self):
Theo Steininger's avatar
Theo Steininger committed
814 815 816
        """ Returns the total volume of all spaces in the domain.
        """

Theo Steininger's avatar
Theo Steininger committed
817
        volume_tuple = tuple(sp.total_volume for sp in self.domain)
818
        try:
Theo Steininger's avatar
Theo Steininger committed
819
            return reduce(lambda x, y: x * y, volume_tuple)
820
        except TypeError:
Theo Steininger's avatar
Theo Steininger committed
821
            return 0.
822

Theo Steininger's avatar
Theo Steininger committed
823
    # ---Special unary/binary operations---
824

csongor's avatar
csongor committed
825
    def cast(self, x=None, dtype=None):
Theo Steininger's avatar
Theo Steininger committed
826
        """ Transforms x to a d2o with the correct dtype and shape.
Theo Steininger's avatar
Theo Steininger committed
827

828 829
        Parameters
        ----------
Theo Steininger's avatar
Theo Steininger committed
830
        x : scalar, d2o, Field, array_like
831 832
            The input that shall be casted on a d2o of the same shape like the
            domain.
Theo Steininger's avatar
Theo Steininger committed
833

834
        dtype : type
Theo Steininger's avatar
Theo Steininger committed
835 836
            The datatype the output shall have. This can be used to override
            the fields dtype.
Theo Steininger's avatar
Theo Steininger committed
837

838 839 840 841 842 843 844 845 846 847
        Returns
        -------
        out : distributed_data_object
            The output object.

        See Also
        --------
        _actual_cast

        """
csongor's avatar
csongor committed
848 849
        if dtype is None:
            dtype = self.dtype
850 851
        else:
            dtype = np.dtype(dtype)
852

853 854
        casted_x = x

855
        for ind, sp in enumerate(self.domain):
856
            casted_x = sp.pre_cast(casted_x,
857 858 859
                                   axes=self.domain_axes[ind])

        casted_x = self._actual_cast(casted_x, dtype=dtype)
860 861

        for ind, sp in enumerate(self.domain):
862 863
            casted_x = sp.post_cast(casted_x,
                                    axes=self.domain_axes[ind])
864

865
        return casted_x
csongor's avatar
csongor committed
866

Theo Steininger's avatar
Theo Steininger committed
867
    def _actual_cast(self, x, dtype=None):
868
        if isinstance(x, Field):
csongor's avatar
csongor committed
869 870 871 872 873
            x = x.get_val()

        if dtype is None:
            dtype = self.dtype

874
        return_x = distributed_data_object(
875 876 877
                            global_shape=self.shape,
                            dtype=dtype,
                            distribution_strategy=self.distribution_strategy)
878 879
        return_x.set_full_data(x, copy=False)
        return return_x
Theo Steininger's avatar
Theo Steininger committed
880

881
    def copy(self, domain=None, dtype=None, distribution_strategy=None):
882
        """ Returns a full copy of the Field.
Theo Steininger's avatar
Theo Steininger committed
883

884 885 886 887 888 889 890 891 892
        If no keyword arguments are given, the returned object will be an
        identical copy of the original Field. By explicit specification one is
        able to define the domain, the dtype and the distribution_strategy of
        the returned Field.

        Parameters
        ----------
        domain : DomainObject
            The new domain the Field shall have.
Theo Steininger's avatar
Theo Steininger committed
893

894 895
        dtype : type
            The new dtype the Field shall have.
Theo Steininger's avatar
Theo Steininger committed
896

897
        distribution_strategy : all supported distribution strategies
Theo Steininger's avatar
Theo Steininger committed
898 899
            The new distribution strategy the Field shall have.

900 901 902 903 904 905 906 907 908 909
        Returns
        -------
        out : Field
            The output object. An identical copy of 'self'.

        See Also
        --------
        copy_empty

        """
Theo Steininger's avatar
Theo Steininger committed
910

Theo Steininger's avatar
Theo Steininger committed
911