correlated_fields.py 15.4 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
14
# Copyright(C) 2013-2019 Max-Planck-Society
Philipp Arras's avatar
Philipp Arras committed
15
# Authors: Philipp Frank, Philipp Arras
Martin Reinecke's avatar
Martin Reinecke committed
16
#
17
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
Philipp Arras's avatar
Philipp Arras committed
18

Philipp Arras's avatar
Philipp Arras committed
19
import numpy as np
20

Philipp Arras's avatar
Philipp Arras committed
21
from ..domain_tuple import DomainTuple
Philipp Arras's avatar
Philipp Arras committed
22
23
from ..domains.power_space import PowerSpace
from ..domains.unstructured_domain import UnstructuredDomain
24
from ..field import Field
Philipp Arras's avatar
Philipp Arras committed
25
from ..operators.adder import Adder
26
from ..operators.contraction_operator import ContractionOperator
Philipp Arras's avatar
Philipp Arras committed
27
from ..operators.distributors import PowerDistributor
Philipp Arras's avatar
Philipp Arras committed
28
from ..operators.endomorphic_operator import EndomorphicOperator
Martin Reinecke's avatar
Martin Reinecke committed
29
from ..operators.harmonic_operators import HarmonicTransformOperator
Philipp Arras's avatar
Philipp Arras committed
30
from ..operators.linear_operator import LinearOperator
Philipp Arras's avatar
Philipp Arras committed
31
32
from ..operators.operator import Operator
from ..operators.simple_linear_operators import VdotOperator, ducktape
Philipp Arras's avatar
Philipp Arras committed
33
from ..operators.value_inserter import ValueInserter
34
from ..sugar import from_global_data, full, makeDomain
35
from ..probing import StatCalculator
36

Philipp Arras's avatar
Philipp Arras committed
37

38
39
def _lognormal_moments(mean, sig):
    mean, sig = float(mean), float(sig)
Philipp Arras's avatar
Philipp Arras committed
40
41
42
    assert sig > 0
    logsig = np.sqrt(np.log((sig/mean)**2 + 1))
    logmean = np.log(mean) - logsig**2/2
43
44
    return logmean, logsig

Philipp Arras's avatar
Philipp Arras committed
45

46
class _lognormal_moment_matching(Operator):
Philipp Arras's avatar
Philipp Arras committed
47
    def __init__(self, mean, sig, key):
48
49
50
51
52
53
54
55
        key = str(key)
        logmean, logsig = _lognormal_moments(mean, sig)
        self._mean = mean
        self._sig = sig
        op = _normal(logmean, logsig, key).exp()
        self._domain = op.domain
        self._target = op.target
        self.apply = op.apply
56

57
58
59
    @property
    def mean(self):
        return self._mean
Philipp Arras's avatar
Philipp Arras committed
60

61
62
63
    @property
    def std(self):
        return self._sig
64

Philipp Arras's avatar
Philipp Arras committed
65

Philipp Arras's avatar
Philipp Arras committed
66
67
68
69
70
def _normal(mean, sig, key):
    return Adder(Field.scalar(mean)) @ (
        sig*ducktape(DomainTuple.scalar_domain(), None, key))


Philipp Arras's avatar
Philipp Arras committed
71
def _log_k_lengths(pspace):
Philipp Arras's avatar
Philipp Arras committed
72
    """Log(k_lengths) without zeromode"""
Philipp Arras's avatar
Philipp Arras committed
73
74
75
    return np.log(pspace.k_lengths[1:])


Philipp Arras's avatar
Philipp Arras committed
76
def _relative_log_k_lengths(power_space):
Philipp Arras's avatar
Philipp Arras committed
77
78
    """Log-distance to first bin
    logkl.shape==power_space.shape, logkl[0]=logkl[1]=0"""
Philipp Arras's avatar
Philipp Arras committed
79
80
81
82
83
84
    power_space = DomainTuple.make(power_space)
    assert isinstance(power_space[0], PowerSpace)
    assert len(power_space) == 1
    logkl = _log_k_lengths(power_space[0])
    assert logkl.shape[0] == power_space[0].shape[0] - 1
    logkl -= logkl[0]
Philipp Arras's avatar
Philipp Arras committed
85
    return np.insert(logkl, 0, 0)
Philipp Arras's avatar
Philipp Arras committed
86
87


Philipp Arras's avatar
Philipp Arras committed
88
89
90
91
92
93
94
95
def _log_vol(power_space):
    power_space = DomainTuple.make(power_space)
    assert isinstance(power_space[0], PowerSpace)
    assert len(power_space) == 1
    logk_lengths = _log_k_lengths(power_space[0])
    return logk_lengths[1:] - logk_lengths[:-1]


Philipp Frank's avatar
Philipp Frank committed
96
class _SlopeRemover(EndomorphicOperator):
Philipp Arras's avatar
Philipp Arras committed
97
    def __init__(self, domain):
Philipp Frank's avatar
Philipp Frank committed
98
        self._domain = makeDomain(domain)
Philipp Arras's avatar
Philipp Arras committed
99
100
        assert len(self._domain) == 1
        assert isinstance(self._domain[0], PowerSpace)
Philipp Arras's avatar
Philipp Arras committed
101
        logkl = _relative_log_k_lengths(self._domain)
102
        self._sc = logkl/float(logkl[-1])
Philipp Frank's avatar
Philipp Frank committed
103
        self._capability = self.TIMES | self.ADJOINT_TIMES
Philipp Arras's avatar
Philipp Arras committed
104

105
106
    def apply(self, x, mode):
        self._check_input(x, mode)
Philipp Frank's avatar
Philipp Frank committed
107
108
        x = x.to_global_data()
        if mode == self.TIMES:
109
            res = x - x[-1]*self._sc
Philipp Frank's avatar
Philipp Frank committed
110
        else:
111
            res = np.zeros(x.shape, dtype=x.dtype)
Philipp Frank's avatar
Philipp Frank committed
112
113
            res += x
            res[-1] -= (x*self._sc).sum()
114
        return from_global_data(self._tgt(mode), res)
Philipp Frank's avatar
Philipp Frank committed
115

116

Philipp Arras's avatar
Philipp Arras committed
117
118
119
class _TwoLogIntegrations(LinearOperator):
    def __init__(self, target):
        self._target = makeDomain(target)
Philipp Arras's avatar
Philipp Arras committed
120
121
        assert len(self._target) == 1
        assert isinstance(self._target[0], PowerSpace)
Philipp Arras's avatar
Philipp Arras committed
122
123
124
125
126
        self._domain = makeDomain(
            UnstructuredDomain((2, self.target.shape[0] - 2)))
        self._capability = self.TIMES | self.ADJOINT_TIMES
        if not isinstance(self._target[0], PowerSpace):
            raise TypeError
Philipp Arras's avatar
Philipp Arras committed
127
        self._log_vol = _log_vol(self._target[0])
Philipp Arras's avatar
Philipp Arras committed
128
129
130
131
132
133

    def apply(self, x, mode):
        self._check_input(x, mode)
        if mode == self.TIMES:
            x = x.to_global_data()
            res = np.empty(self._target.shape)
Philipp Arras's avatar
Philipp Arras committed
134
            res[0] = res[1] = 0
Philipp Arras's avatar
Philipp Arras committed
135
            res[2:] = np.cumsum(x[1])
Philipp Arras's avatar
Philipp Arras committed
136
            res[2:] = (res[2:] + res[1:-1])/2*self._log_vol + x[0]
Philipp Arras's avatar
Philipp Arras committed
137
138
139
140
141
142
143
            res[2:] = np.cumsum(res[2:])
            return from_global_data(self._target, res)
        else:
            x = x.to_global_data_rw()
            res = np.zeros(self._domain.shape)
            x[2:] = np.cumsum(x[2:][::-1])[::-1]
            res[0] += x[2:]
Philipp Arras's avatar
Philipp Arras committed
144
            x[2:] *= self._log_vol/2.
145
146
            x[1:-1] += x[2:]
            res[1] += np.cumsum(x[2:][::-1])[::-1]
Philipp Arras's avatar
Philipp Arras committed
147
148
149
150
151
152
            return from_global_data(self._domain, res)


class _Normalization(Operator):
    def __init__(self, domain):
        self._domain = self._target = makeDomain(domain)
Philipp Arras's avatar
Philipp Arras committed
153
        assert len(self._domain) == 1
Philipp Arras's avatar
Philipp Arras committed
154
        assert isinstance(self._domain[0], PowerSpace)
Philipp Arras's avatar
Philipp Arras committed
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
        hspace = self._domain[0].harmonic_partner
        pd = PowerDistributor(hspace, power_space=self._domain[0])
        cst = pd.adjoint(full(pd.target, 1.)).to_global_data_rw()
        cst[0] = 0
        self._cst = from_global_data(self._domain, cst)
        self._specsum = _SpecialSum(self._domain)

    def apply(self, x):
        self._check_input(x)
        amp = x.exp()
        spec = (2*x).exp()
        # FIXME This normalizes also the zeromode which is supposed to be left
        # untouched by this operator
        return self._specsum(self._cst*spec)**(-0.5)*amp


class _SpecialSum(EndomorphicOperator):
    def __init__(self, domain):
        self._domain = makeDomain(domain)
Philipp Arras's avatar
Philipp Arras committed
174
        assert len(self._domain) == 1
Philipp Arras's avatar
Philipp Arras committed
175
176
177
178
179
180
181
        self._capability = self.TIMES | self.ADJOINT_TIMES

    def apply(self, x, mode):
        self._check_input(x, mode)
        return full(self._tgt(mode), x.sum())


182
183
184
class _Amplitude(Operator):
    def __init__(self, target, fluctuations, flexibility, asperity,
                 loglogavgslope, key):
Philipp Arras's avatar
Philipp Arras committed
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
        """
        fluctuations > 0
        flexibility > 0
        asperity > 0
        loglogavgslope probably negative
        """
        assert isinstance(fluctuations, Operator)
        assert isinstance(flexibility, Operator)
        assert isinstance(asperity, Operator)
        assert isinstance(loglogavgslope, Operator)
        target = makeDomain(target)
        assert len(target) == 1
        assert isinstance(target[0], PowerSpace)

        twolog = _TwoLogIntegrations(target)
Philipp Arras's avatar
Philipp Arras committed
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
        dom = twolog.domain
        shp = dom.shape
        totvol = target[0].harmonic_partner.get_default_codomain().total_volume

        # Prepare constant fields
        foo = np.zeros(shp)
        foo[0] = foo[1] = np.sqrt(_log_vol(target))
        sc = from_global_data(dom, foo)

        foo = np.zeros(shp, dtype=np.float64)
        foo[0] += 1
        dist = from_global_data(dom, foo)

        foo = np.ones(shp)
        foo[0] = _log_vol(target)**2/12.
        shift = from_global_data(dom, foo)

Philipp Arras's avatar
Philipp Arras committed
217
        t = from_global_data(target, _relative_log_k_lengths(target))
Philipp Arras's avatar
Philipp Arras committed
218
219
220
221
222
223
224
225
226
227
228
229
230

        foo, bar = 2*(np.zeros(target.shape),)
        foo[1:] = bar[0] = totvol
        vol1 = from_global_data(target, foo)
        vol0 = from_global_data(target, bar)
        # End prepare constant fields

        slope = VdotOperator(t).adjoint @ loglogavgslope
        sig_flex = VdotOperator(sc).adjoint @ flexibility
        sig_asp = VdotOperator(dist).adjoint @ asperity
        sig_fluc = VdotOperator(vol1).adjoint @ fluctuations

        xi = ducktape(dom, None, key)
Philipp Arras's avatar
Philipp Arras committed
231
        sigma = sig_flex*(Adder(shift) @ sig_asp).sqrt()
Philipp Arras's avatar
Philipp Arras committed
232
233
234
235
        smooth = _SlopeRemover(target) @ twolog @ (sigma*xi)
        op = _Normalization(target) @ (slope + smooth)
        op = Adder(vol0) @ (sig_fluc*op)

Philipp Arras's avatar
Philipp Arras committed
236
        self.apply = op.apply
237
        self.fluctuation_amplitude = fluctuations
Philipp Arras's avatar
Philipp Arras committed
238
        self._domain, self._target = op.domain, op.target
Philipp Arras's avatar
Philipp Arras committed
239

240
241
242
243

class CorrelatedFieldMaker:
    def __init__(self):
        self._a = []
244
        self._azm = None
245
246
247
248
249
250
251
252
253
254
255

    def add_fluctuations(self,
                         target,
                         fluctuations_mean,
                         fluctuations_stddev,
                         flexibility_mean,
                         flexibility_stddev,
                         asperity_mean,
                         asperity_stddev,
                         loglogavgslope_mean,
                         loglogavgslope_stddev,
256
                         prefix='',
Philipp Arras's avatar
Philipp Arras committed
257
                         index=None):
Philipp Arras's avatar
Philipp Arras committed
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
        fluctuations_mean = float(fluctuations_mean)
        fluctuations_stddev = float(fluctuations_stddev)
        flexibility_mean = float(flexibility_mean)
        flexibility_stddev = float(flexibility_stddev)
        asperity_mean = float(asperity_mean)
        asperity_stddev = float(asperity_stddev)
        loglogavgslope_mean = float(loglogavgslope_mean)
        loglogavgslope_stddev = float(loglogavgslope_stddev)
        prefix = str(prefix)
        assert fluctuations_stddev > 0
        assert fluctuations_mean > 0
        assert flexibility_stddev > 0
        assert flexibility_mean > 0
        assert asperity_stddev > 0
        assert asperity_mean > 0
        assert loglogavgslope_stddev > 0

        fluct = _lognormal_moment_matching(fluctuations_mean,
                                           fluctuations_stddev,
                                           prefix + 'fluctuations')
        flex = _lognormal_moment_matching(flexibility_mean, flexibility_stddev,
                                          prefix + 'flexibility')
        asp = _lognormal_moment_matching(asperity_mean, asperity_stddev,
                                         prefix + 'asperity')
282
        avgsl = _normal(loglogavgslope_mean, loglogavgslope_stddev,
Philipp Arras's avatar
Philipp Arras committed
283
                        prefix + 'loglogavgslope')
284
285
286
287
288
        amp = _Amplitude(target, fluct, flex, asp, avgsl, prefix + 'spectrum')
        if index is not None:
            self._a.insert(index, amp)
        else:
            self._a.append(amp)
289
290
291

    def finalize_from_op(self, zeromode, prefix=''):
        assert isinstance(zeromode, Operator)
292
        self._azm = zeromode
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
        hspace = makeDomain([dd.target[0].harmonic_partner for dd in self._a])
        foo = np.ones(hspace.shape)
        zeroind = len(hspace.shape)*(0,)
        foo[zeroind] = 0
        azm = Adder(from_global_data(hspace, foo)) @ ValueInserter(
            hspace, zeroind) @ zeromode

        n_amplitudes = len(self._a)
        ht = HarmonicTransformOperator(hspace, space=0)
        for i in range(1, n_amplitudes):
            ht = HarmonicTransformOperator(ht.target, space=i) @ ht

        pd = PowerDistributor(hspace, self._a[0].target[0], 0)
        for i in range(1, n_amplitudes):
            foo = PowerDistributor(pd.domain, self._a[i].target[0], space=i)
            pd = pd @ foo

        spaces = tuple(range(n_amplitudes))
        a = ContractionOperator(pd.domain, spaces[1:]).adjoint @ self._a[0]
        for i in range(1, n_amplitudes):
            co = ContractionOperator(pd.domain, spaces[:i] + spaces[(i + 1):])
            a = a*(co.adjoint @ self._a[i])
Philipp Arras's avatar
Philipp Arras committed
315

316
        return ht(azm*(pd @ a)*ducktape(hspace, None, prefix + 'xi'))
Philipp Arras's avatar
Philipp Arras committed
317
318
319
320

    def finalize(self,
                 offset_amplitude_mean,
                 offset_amplitude_stddev,
321
                 prefix='',
Philipp Arras's avatar
Philipp Arras committed
322
323
324
325
326
327
328
329
330
                 offset=None):
        """
        offset vs zeromode: volume factor
        """
        offset_amplitude_stddev = float(offset_amplitude_stddev)
        offset_amplitude_mean = float(offset_amplitude_mean)
        assert offset_amplitude_stddev > 0
        assert offset_amplitude_mean > 0
        if offset is not None:
331
            raise NotImplementedError
Philipp Arras's avatar
Philipp Arras committed
332
333
334
335
            offset = float(offset)
        azm = _lognormal_moment_matching(offset_amplitude_mean,
                                         offset_amplitude_stddev,
                                         prefix + 'zeromode')
336
        return self.finalize_from_op(azm, prefix)
Philipp Arras's avatar
Philipp Arras committed
337
338
339

    @property
    def amplitudes(self):
340
        return self._a
341

342
343
344
345
346
347
348
    @property
    def amplitude_total_offset(self):
        return self._azm

    @property
    def total_fluctuation(self):
        if len(self._a) == 0:
Philipp Arras's avatar
Philipp Arras committed
349
            raise NotImplementedError
350
351
352
353
354
        if len(self._a) == 1:
            return self._a[0].fluctuation_amplitude
        q = 1.
        for a in self._a:
            fl = a.fluctuation_amplitude
Philipp Arras's avatar
Philipp Arras committed
355
356
            q = q*(Adder(full(fl.target, 1.)) @ fl**2)
        return (Adder(full(q.target, -1.)) @ q).sqrt()
357

Philipp Arras's avatar
Philipp Arras committed
358
    def slice_fluctuation(self, space):
359
        if len(self._a) == 0:
Philipp Arras's avatar
Philipp Arras committed
360
            raise NotImplementedError
361
362
363
364
365
366
367
        assert space < len(self._a)
        if len(self._a) == 1:
            return self._a[0].fluctuation_amplitude
        q = 1.
        for j in range(len(self._a)):
            fl = self._a[j].fluctuation_amplitude
            if j == space:
Philipp Arras's avatar
Philipp Arras committed
368
                q = q*fl**2
369
            else:
Philipp Arras's avatar
Philipp Arras committed
370
                q = q*(Adder(full(fl.target, 1.)) @ fl**2)
371
        return q.sqrt()
Philipp Arras's avatar
Philipp Arras committed
372
373

    def average_fluctuation(self, space):
374
        if len(self._a) == 0:
Philipp Arras's avatar
Philipp Arras committed
375
            raise NotImplementedError
376
377
378
379
380
        assert space < len(self._a)
        if len(self._a) == 1:
            return self._a[0].fluctuation_amplitude
        return self._a[space].fluctuation_amplitude

Philipp Arras's avatar
Philipp Arras committed
381
    def offset_amplitude_realized(self, samples):
382
383
384
385
        res = 0.
        for s in samples:
            res += s.mean()**2
        return np.sqrt(res/len(samples))
Philipp Arras's avatar
Philipp Arras committed
386
387

    def total_fluctuation_realized(self, samples):
388
389
        res = 0.
        for s in samples:
Philipp Arras's avatar
Philipp Arras committed
390
            res = res + (s - s.mean())**2
391
392
        res = res/len(samples)
        return np.sqrt(res.mean())
Philipp Arras's avatar
Philipp Arras committed
393
394

    def average_fluctuation_realized(self, samples, space):
395
396
397
398
        ldom = len(samples[0].domain)
        assert space < ldom
        if ldom == 1:
            return self.total_fluctuation_realized(samples)
Philipp Arras's avatar
Philipp Arras committed
399
        spaces = ()
400
401
402
403
404
405
        for i in range(ldom):
            if i != space:
                spaces += (i,)
        res = 0.
        for s in samples:
            r = s.mean(spaces)
Philipp Arras's avatar
Philipp Arras committed
406
            res = res + (r - r.mean())**2
407
408
        res = res/len(samples)
        return np.sqrt(res.mean())
Philipp Arras's avatar
Philipp Arras committed
409
410

    def slice_fluctuation_realized(self, samples, space):
411
412
413
414
415
416
417
418
419
420
421
        ldom = len(samples[0].domain)
        assert space < ldom
        if ldom == 1:
            return self.total_fluctuation_realized(samples)
        res1 = 0.
        res2 = 0.
        for s in samples:
            res1 = res1 + s**2
            res2 = res2 + s.mean(space)**2
        res1 = res1/len(samples)
        res2 = res2/len(samples)
Philipp Arras's avatar
Philipp Arras committed
422
        res = res1.mean() - res2.mean()
423
424
        return np.sqrt(res)

Philipp Arras's avatar
Philipp Arras committed
425
    def stats(self, op, samples):
426
427
428
        sc = StatCalculator()
        for s in samples:
            sc.add(op(s.extract(op.domain)))
429
        return sc.mean.to_global_data(), sc.var.sqrt().to_global_data()
Philipp Arras's avatar
Philipp Arras committed
430
431

    def moment_slice_to_average(self, fluctuations_slice_mean, nsamples=1000):
432
433
434
435
436
        fluctuations_slice_mean = float(fluctuations_slice_mean)
        assert fluctuations_slice_mean > 0
        scm = 1.
        for a in self._a:
            m, std = a.fluctuation_amplitude.mean, a.fluctuation_amplitude.std
Philipp Arras's avatar
Philipp Arras committed
437
438
            mu, sig = _lognormal_moments(m, std)
            flm = np.exp(mu + sig*np.random.normal(size=nsamples))
439
440
            scm *= flm**2 + 1.
        scm = np.mean(np.sqrt(scm))
Philipp Arras's avatar
Philipp Arras committed
441
        return fluctuations_slice_mean/scm