There is a maintenance of MPCDF Gitlab on Thursday, April 22st 2020, 9:00 am CEST - Expect some service interruptions during this time

correlated_fields.py 15.4 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1 2 3 4 5 6 7 8 9 10 11 12 13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
14
# Copyright(C) 2013-2019 Max-Planck-Society
Philipp Arras's avatar
Philipp Arras committed
15
# Authors: Philipp Frank, Philipp Arras
Martin Reinecke's avatar
Martin Reinecke committed
16
#
17
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
Philipp Arras's avatar
Philipp Arras committed
18

Philipp Arras's avatar
Philipp Arras committed
19
import numpy as np
20

Philipp Arras's avatar
Philipp Arras committed
21
from ..domain_tuple import DomainTuple
Philipp Arras's avatar
Philipp Arras committed
22 23
from ..domains.power_space import PowerSpace
from ..domains.unstructured_domain import UnstructuredDomain
24
from ..field import Field
Philipp Arras's avatar
Philipp Arras committed
25
from ..operators.adder import Adder
26
from ..operators.contraction_operator import ContractionOperator
Philipp Arras's avatar
Philipp Arras committed
27
from ..operators.distributors import PowerDistributor
Philipp Arras's avatar
Philipp Arras committed
28
from ..operators.endomorphic_operator import EndomorphicOperator
Martin Reinecke's avatar
Martin Reinecke committed
29
from ..operators.harmonic_operators import HarmonicTransformOperator
Philipp Arras's avatar
Philipp Arras committed
30
from ..operators.linear_operator import LinearOperator
Philipp Arras's avatar
Philipp Arras committed
31 32
from ..operators.operator import Operator
from ..operators.simple_linear_operators import VdotOperator, ducktape
Philipp Arras's avatar
Philipp Arras committed
33
from ..operators.value_inserter import ValueInserter
34
from ..sugar import from_global_data, full, makeDomain
35
from ..probing import StatCalculator
36

Philipp Arras's avatar
Philipp Arras committed
37

38 39
def _lognormal_moments(mean, sig):
    mean, sig = float(mean), float(sig)
Philipp Arras's avatar
Philipp Arras committed
40 41 42
    assert sig > 0
    logsig = np.sqrt(np.log((sig/mean)**2 + 1))
    logmean = np.log(mean) - logsig**2/2
43 44
    return logmean, logsig

Philipp Arras's avatar
Philipp Arras committed
45

46
class _lognormal_moment_matching(Operator):
Philipp Arras's avatar
Philipp Arras committed
47
    def __init__(self, mean, sig, key):
48 49 50 51 52 53 54 55
        key = str(key)
        logmean, logsig = _lognormal_moments(mean, sig)
        self._mean = mean
        self._sig = sig
        op = _normal(logmean, logsig, key).exp()
        self._domain = op.domain
        self._target = op.target
        self.apply = op.apply
56

57 58 59
    @property
    def mean(self):
        return self._mean
Philipp Arras's avatar
Philipp Arras committed
60

61 62 63
    @property
    def std(self):
        return self._sig
64

Philipp Arras's avatar
Philipp Arras committed
65

Philipp Arras's avatar
Philipp Arras committed
66 67 68 69 70
def _normal(mean, sig, key):
    return Adder(Field.scalar(mean)) @ (
        sig*ducktape(DomainTuple.scalar_domain(), None, key))


Philipp Arras's avatar
Philipp Arras committed
71
def _log_k_lengths(pspace):
Philipp Arras's avatar
Philipp Arras committed
72
    """Log(k_lengths) without zeromode"""
Philipp Arras's avatar
Philipp Arras committed
73 74 75
    return np.log(pspace.k_lengths[1:])


Philipp Arras's avatar
Philipp Arras committed
76
def _relative_log_k_lengths(power_space):
Philipp Arras's avatar
Philipp Arras committed
77 78
    """Log-distance to first bin
    logkl.shape==power_space.shape, logkl[0]=logkl[1]=0"""
Philipp Arras's avatar
Philipp Arras committed
79 80 81 82 83 84
    power_space = DomainTuple.make(power_space)
    assert isinstance(power_space[0], PowerSpace)
    assert len(power_space) == 1
    logkl = _log_k_lengths(power_space[0])
    assert logkl.shape[0] == power_space[0].shape[0] - 1
    logkl -= logkl[0]
Philipp Arras's avatar
Philipp Arras committed
85
    return np.insert(logkl, 0, 0)
Philipp Arras's avatar
Philipp Arras committed
86 87


Philipp Arras's avatar
Philipp Arras committed
88 89 90 91 92 93 94 95
def _log_vol(power_space):
    power_space = DomainTuple.make(power_space)
    assert isinstance(power_space[0], PowerSpace)
    assert len(power_space) == 1
    logk_lengths = _log_k_lengths(power_space[0])
    return logk_lengths[1:] - logk_lengths[:-1]


Philipp Frank's avatar
Philipp Frank committed
96
class _SlopeRemover(EndomorphicOperator):
Philipp Arras's avatar
Philipp Arras committed
97
    def __init__(self, domain):
Philipp Frank's avatar
Philipp Frank committed
98
        self._domain = makeDomain(domain)
Philipp Arras's avatar
Philipp Arras committed
99 100
        assert len(self._domain) == 1
        assert isinstance(self._domain[0], PowerSpace)
Philipp Arras's avatar
Philipp Arras committed
101
        logkl = _relative_log_k_lengths(self._domain)
102
        self._sc = logkl/float(logkl[-1])
Philipp Frank's avatar
Philipp Frank committed
103
        self._capability = self.TIMES | self.ADJOINT_TIMES
Philipp Arras's avatar
Philipp Arras committed
104

105 106
    def apply(self, x, mode):
        self._check_input(x, mode)
Philipp Frank's avatar
Philipp Frank committed
107 108
        x = x.to_global_data()
        if mode == self.TIMES:
109
            res = x - x[-1]*self._sc
Philipp Frank's avatar
Philipp Frank committed
110
        else:
111
            res = np.zeros(x.shape, dtype=x.dtype)
Philipp Frank's avatar
Philipp Frank committed
112 113
            res += x
            res[-1] -= (x*self._sc).sum()
114
        return from_global_data(self._tgt(mode), res)
Philipp Frank's avatar
Philipp Frank committed
115

116

Philipp Arras's avatar
Philipp Arras committed
117 118 119
class _TwoLogIntegrations(LinearOperator):
    def __init__(self, target):
        self._target = makeDomain(target)
Philipp Arras's avatar
Philipp Arras committed
120 121
        assert len(self._target) == 1
        assert isinstance(self._target[0], PowerSpace)
Philipp Arras's avatar
Philipp Arras committed
122 123 124 125 126
        self._domain = makeDomain(
            UnstructuredDomain((2, self.target.shape[0] - 2)))
        self._capability = self.TIMES | self.ADJOINT_TIMES
        if not isinstance(self._target[0], PowerSpace):
            raise TypeError
Philipp Arras's avatar
Philipp Arras committed
127
        self._log_vol = _log_vol(self._target[0])
Philipp Arras's avatar
Philipp Arras committed
128 129 130 131 132 133

    def apply(self, x, mode):
        self._check_input(x, mode)
        if mode == self.TIMES:
            x = x.to_global_data()
            res = np.empty(self._target.shape)
Philipp Arras's avatar
Philipp Arras committed
134
            res[0] = res[1] = 0
Philipp Arras's avatar
Philipp Arras committed
135
            res[2:] = np.cumsum(x[1])
Philipp Arras's avatar
Philipp Arras committed
136
            res[2:] = (res[2:] + res[1:-1])/2*self._log_vol + x[0]
Philipp Arras's avatar
Philipp Arras committed
137 138 139 140 141 142 143
            res[2:] = np.cumsum(res[2:])
            return from_global_data(self._target, res)
        else:
            x = x.to_global_data_rw()
            res = np.zeros(self._domain.shape)
            x[2:] = np.cumsum(x[2:][::-1])[::-1]
            res[0] += x[2:]
Philipp Arras's avatar
Philipp Arras committed
144
            x[2:] *= self._log_vol/2.
145 146
            x[1:-1] += x[2:]
            res[1] += np.cumsum(x[2:][::-1])[::-1]
Philipp Arras's avatar
Philipp Arras committed
147 148 149 150 151 152
            return from_global_data(self._domain, res)


class _Normalization(Operator):
    def __init__(self, domain):
        self._domain = self._target = makeDomain(domain)
Philipp Arras's avatar
Philipp Arras committed
153
        assert len(self._domain) == 1
Philipp Arras's avatar
Philipp Arras committed
154
        assert isinstance(self._domain[0], PowerSpace)
Philipp Arras's avatar
Philipp Arras committed
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
        hspace = self._domain[0].harmonic_partner
        pd = PowerDistributor(hspace, power_space=self._domain[0])
        cst = pd.adjoint(full(pd.target, 1.)).to_global_data_rw()
        cst[0] = 0
        self._cst = from_global_data(self._domain, cst)
        self._specsum = _SpecialSum(self._domain)

    def apply(self, x):
        self._check_input(x)
        amp = x.exp()
        spec = (2*x).exp()
        # FIXME This normalizes also the zeromode which is supposed to be left
        # untouched by this operator
        return self._specsum(self._cst*spec)**(-0.5)*amp


class _SpecialSum(EndomorphicOperator):
    def __init__(self, domain):
        self._domain = makeDomain(domain)
Philipp Arras's avatar
Philipp Arras committed
174
        assert len(self._domain) == 1
Philipp Arras's avatar
Philipp Arras committed
175 176 177 178 179 180 181
        self._capability = self.TIMES | self.ADJOINT_TIMES

    def apply(self, x, mode):
        self._check_input(x, mode)
        return full(self._tgt(mode), x.sum())


182 183 184
class _Amplitude(Operator):
    def __init__(self, target, fluctuations, flexibility, asperity,
                 loglogavgslope, key):
Philipp Arras's avatar
Philipp Arras committed
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
        """
        fluctuations > 0
        flexibility > 0
        asperity > 0
        loglogavgslope probably negative
        """
        assert isinstance(fluctuations, Operator)
        assert isinstance(flexibility, Operator)
        assert isinstance(asperity, Operator)
        assert isinstance(loglogavgslope, Operator)
        target = makeDomain(target)
        assert len(target) == 1
        assert isinstance(target[0], PowerSpace)

        twolog = _TwoLogIntegrations(target)
Philipp Arras's avatar
Philipp Arras committed
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
        dom = twolog.domain
        shp = dom.shape
        totvol = target[0].harmonic_partner.get_default_codomain().total_volume

        # Prepare constant fields
        foo = np.zeros(shp)
        foo[0] = foo[1] = np.sqrt(_log_vol(target))
        sc = from_global_data(dom, foo)

        foo = np.zeros(shp, dtype=np.float64)
        foo[0] += 1
        dist = from_global_data(dom, foo)

        foo = np.ones(shp)
        foo[0] = _log_vol(target)**2/12.
        shift = from_global_data(dom, foo)

Philipp Arras's avatar
Philipp Arras committed
217
        t = from_global_data(target, _relative_log_k_lengths(target))
Philipp Arras's avatar
Philipp Arras committed
218 219 220 221 222 223 224 225 226 227 228 229 230

        foo, bar = 2*(np.zeros(target.shape),)
        foo[1:] = bar[0] = totvol
        vol1 = from_global_data(target, foo)
        vol0 = from_global_data(target, bar)
        # End prepare constant fields

        slope = VdotOperator(t).adjoint @ loglogavgslope
        sig_flex = VdotOperator(sc).adjoint @ flexibility
        sig_asp = VdotOperator(dist).adjoint @ asperity
        sig_fluc = VdotOperator(vol1).adjoint @ fluctuations

        xi = ducktape(dom, None, key)
Philipp Arras's avatar
Philipp Arras committed
231
        sigma = sig_flex*(Adder(shift) @ sig_asp).sqrt()
Philipp Arras's avatar
Philipp Arras committed
232 233 234 235
        smooth = _SlopeRemover(target) @ twolog @ (sigma*xi)
        op = _Normalization(target) @ (slope + smooth)
        op = Adder(vol0) @ (sig_fluc*op)

Philipp Arras's avatar
Philipp Arras committed
236
        self.apply = op.apply
237
        self.fluctuation_amplitude = fluctuations
Philipp Arras's avatar
Philipp Arras committed
238
        self._domain, self._target = op.domain, op.target
Philipp Arras's avatar
Philipp Arras committed
239

240 241 242 243

class CorrelatedFieldMaker:
    def __init__(self):
        self._a = []
244
        self._azm = None
245 246 247 248 249 250 251 252 253 254 255

    def add_fluctuations(self,
                         target,
                         fluctuations_mean,
                         fluctuations_stddev,
                         flexibility_mean,
                         flexibility_stddev,
                         asperity_mean,
                         asperity_stddev,
                         loglogavgslope_mean,
                         loglogavgslope_stddev,
256
                         prefix='',
Philipp Arras's avatar
Philipp Arras committed
257
                         index=None):
Philipp Arras's avatar
Philipp Arras committed
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
        fluctuations_mean = float(fluctuations_mean)
        fluctuations_stddev = float(fluctuations_stddev)
        flexibility_mean = float(flexibility_mean)
        flexibility_stddev = float(flexibility_stddev)
        asperity_mean = float(asperity_mean)
        asperity_stddev = float(asperity_stddev)
        loglogavgslope_mean = float(loglogavgslope_mean)
        loglogavgslope_stddev = float(loglogavgslope_stddev)
        prefix = str(prefix)
        assert fluctuations_stddev > 0
        assert fluctuations_mean > 0
        assert flexibility_stddev > 0
        assert flexibility_mean > 0
        assert asperity_stddev > 0
        assert asperity_mean > 0
        assert loglogavgslope_stddev > 0

        fluct = _lognormal_moment_matching(fluctuations_mean,
                                           fluctuations_stddev,
                                           prefix + 'fluctuations')
        flex = _lognormal_moment_matching(flexibility_mean, flexibility_stddev,
                                          prefix + 'flexibility')
        asp = _lognormal_moment_matching(asperity_mean, asperity_stddev,
                                         prefix + 'asperity')
282
        avgsl = _normal(loglogavgslope_mean, loglogavgslope_stddev,
Philipp Arras's avatar
Philipp Arras committed
283
                        prefix + 'loglogavgslope')
284 285 286 287 288
        amp = _Amplitude(target, fluct, flex, asp, avgsl, prefix + 'spectrum')
        if index is not None:
            self._a.insert(index, amp)
        else:
            self._a.append(amp)
289 290 291

    def finalize_from_op(self, zeromode, prefix=''):
        assert isinstance(zeromode, Operator)
292
        self._azm = zeromode
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
        hspace = makeDomain([dd.target[0].harmonic_partner for dd in self._a])
        foo = np.ones(hspace.shape)
        zeroind = len(hspace.shape)*(0,)
        foo[zeroind] = 0
        azm = Adder(from_global_data(hspace, foo)) @ ValueInserter(
            hspace, zeroind) @ zeromode

        n_amplitudes = len(self._a)
        ht = HarmonicTransformOperator(hspace, space=0)
        for i in range(1, n_amplitudes):
            ht = HarmonicTransformOperator(ht.target, space=i) @ ht

        pd = PowerDistributor(hspace, self._a[0].target[0], 0)
        for i in range(1, n_amplitudes):
            foo = PowerDistributor(pd.domain, self._a[i].target[0], space=i)
            pd = pd @ foo

        spaces = tuple(range(n_amplitudes))
        a = ContractionOperator(pd.domain, spaces[1:]).adjoint @ self._a[0]
        for i in range(1, n_amplitudes):
            co = ContractionOperator(pd.domain, spaces[:i] + spaces[(i + 1):])
            a = a*(co.adjoint @ self._a[i])
Philipp Arras's avatar
Philipp Arras committed
315

316
        return ht(azm*(pd @ a)*ducktape(hspace, None, prefix + 'xi'))
Philipp Arras's avatar
Philipp Arras committed
317 318 319 320

    def finalize(self,
                 offset_amplitude_mean,
                 offset_amplitude_stddev,
321
                 prefix='',
Philipp Arras's avatar
Philipp Arras committed
322 323 324 325 326 327 328 329 330
                 offset=None):
        """
        offset vs zeromode: volume factor
        """
        offset_amplitude_stddev = float(offset_amplitude_stddev)
        offset_amplitude_mean = float(offset_amplitude_mean)
        assert offset_amplitude_stddev > 0
        assert offset_amplitude_mean > 0
        if offset is not None:
331
            raise NotImplementedError
Philipp Arras's avatar
Philipp Arras committed
332 333 334 335
            offset = float(offset)
        azm = _lognormal_moment_matching(offset_amplitude_mean,
                                         offset_amplitude_stddev,
                                         prefix + 'zeromode')
336
        return self.finalize_from_op(azm, prefix)
Philipp Arras's avatar
Philipp Arras committed
337 338 339

    @property
    def amplitudes(self):
340
        return self._a
341

342 343 344 345 346 347 348
    @property
    def amplitude_total_offset(self):
        return self._azm

    @property
    def total_fluctuation(self):
        if len(self._a) == 0:
Philipp Arras's avatar
Philipp Arras committed
349
            raise NotImplementedError
350 351 352 353 354
        if len(self._a) == 1:
            return self._a[0].fluctuation_amplitude
        q = 1.
        for a in self._a:
            fl = a.fluctuation_amplitude
Philipp Arras's avatar
Philipp Arras committed
355 356
            q = q*(Adder(full(fl.target, 1.)) @ fl**2)
        return (Adder(full(q.target, -1.)) @ q).sqrt()
357

Philipp Arras's avatar
Philipp Arras committed
358
    def slice_fluctuation(self, space):
359
        if len(self._a) == 0:
Philipp Arras's avatar
Philipp Arras committed
360
            raise NotImplementedError
361 362 363 364 365 366 367
        assert space < len(self._a)
        if len(self._a) == 1:
            return self._a[0].fluctuation_amplitude
        q = 1.
        for j in range(len(self._a)):
            fl = self._a[j].fluctuation_amplitude
            if j == space:
Philipp Arras's avatar
Philipp Arras committed
368
                q = q*fl**2
369
            else:
Philipp Arras's avatar
Philipp Arras committed
370
                q = q*(Adder(full(fl.target, 1.)) @ fl**2)
371
        return q.sqrt()
Philipp Arras's avatar
Philipp Arras committed
372 373

    def average_fluctuation(self, space):
374
        if len(self._a) == 0:
Philipp Arras's avatar
Philipp Arras committed
375
            raise NotImplementedError
376 377 378 379 380
        assert space < len(self._a)
        if len(self._a) == 1:
            return self._a[0].fluctuation_amplitude
        return self._a[space].fluctuation_amplitude

Philipp Arras's avatar
Philipp Arras committed
381
    def offset_amplitude_realized(self, samples):
382 383 384 385
        res = 0.
        for s in samples:
            res += s.mean()**2
        return np.sqrt(res/len(samples))
Philipp Arras's avatar
Philipp Arras committed
386 387

    def total_fluctuation_realized(self, samples):
388 389
        res = 0.
        for s in samples:
Philipp Arras's avatar
Philipp Arras committed
390
            res = res + (s - s.mean())**2
391 392
        res = res/len(samples)
        return np.sqrt(res.mean())
Philipp Arras's avatar
Philipp Arras committed
393 394

    def average_fluctuation_realized(self, samples, space):
395 396 397 398
        ldom = len(samples[0].domain)
        assert space < ldom
        if ldom == 1:
            return self.total_fluctuation_realized(samples)
Philipp Arras's avatar
Philipp Arras committed
399
        spaces = ()
400 401 402 403 404 405
        for i in range(ldom):
            if i != space:
                spaces += (i,)
        res = 0.
        for s in samples:
            r = s.mean(spaces)
Philipp Arras's avatar
Philipp Arras committed
406
            res = res + (r - r.mean())**2
407 408
        res = res/len(samples)
        return np.sqrt(res.mean())
Philipp Arras's avatar
Philipp Arras committed
409 410

    def slice_fluctuation_realized(self, samples, space):
411 412 413 414 415 416 417 418 419 420 421
        ldom = len(samples[0].domain)
        assert space < ldom
        if ldom == 1:
            return self.total_fluctuation_realized(samples)
        res1 = 0.
        res2 = 0.
        for s in samples:
            res1 = res1 + s**2
            res2 = res2 + s.mean(space)**2
        res1 = res1/len(samples)
        res2 = res2/len(samples)
Philipp Arras's avatar
Philipp Arras committed
422
        res = res1.mean() - res2.mean()
423 424
        return np.sqrt(res)

Philipp Arras's avatar
Philipp Arras committed
425
    def stats(self, op, samples):
426 427 428
        sc = StatCalculator()
        for s in samples:
            sc.add(op(s.extract(op.domain)))
429
        return sc.mean.to_global_data(), sc.var.sqrt().to_global_data()
Philipp Arras's avatar
Philipp Arras committed
430 431

    def moment_slice_to_average(self, fluctuations_slice_mean, nsamples=1000):
432 433 434 435 436
        fluctuations_slice_mean = float(fluctuations_slice_mean)
        assert fluctuations_slice_mean > 0
        scm = 1.
        for a in self._a:
            m, std = a.fluctuation_amplitude.mean, a.fluctuation_amplitude.std
Philipp Arras's avatar
Philipp Arras committed
437 438
            mu, sig = _lognormal_moments(m, std)
            flm = np.exp(mu + sig*np.random.normal(size=nsamples))
439 440
            scm *= flm**2 + 1.
        scm = np.mean(np.sqrt(scm))
Philipp Arras's avatar
Philipp Arras committed
441
        return fluctuations_slice_mean/scm