field.py 26.6 KB
Newer Older
csongor's avatar
csongor committed
1
2
3
from __future__ import division
import numpy as np

4
from d2o import distributed_data_object,\
5
    STRATEGIES as DISTRIBUTION_STRATEGIES
csongor's avatar
csongor committed
6

7
8
9
from nifty.config import about,\
                         nifty_configuration as gc,\
                         dependency_injector as gdi
csongor's avatar
csongor committed
10

11
from nifty.field_types import FieldType
12

13
from nifty.spaces.space import Space
14
from nifty.spaces.power_space import PowerSpace
csongor's avatar
csongor committed
15

csongor's avatar
csongor committed
16
import nifty.nifty_utilities as utilities
17
18
from nifty.random import Random

csongor's avatar
csongor committed
19
20

POINT_DISTRIBUTION_STRATEGIES = DISTRIBUTION_STRATEGIES['global']
theos's avatar
theos committed
21
COMM = getattr(gdi[gc['mpi_module']], gc['default_comm'])
csongor's avatar
csongor committed
22
23


24
class Field(object):
theos's avatar
theos committed
25
    # ---Initialization methods---
26

theos's avatar
theos committed
27
28
    def __init__(self, domain=None, val=None, dtype=None, field_type=None,
                 datamodel=None, copy=False):
csongor's avatar
csongor committed
29

30
        self.domain = self._parse_domain(domain=domain, val=val)
31
        self.domain_axes = self._get_axes_tuple(self.domain)
csongor's avatar
csongor committed
32

33
        self.field_type = self._parse_field_type(field_type, val=val)
34

theos's avatar
theos committed
35
36
37
38
39
40
        try:
            start = len(reduce(lambda x, y: x+y, self.domain_axes))
        except TypeError:
            start = 0
        self.field_type_axes = self._get_axes_tuple(self.field_type,
                                                    start=start)
41

theos's avatar
theos committed
42
        self.dtype = self._infer_dtype(dtype=dtype,
Jait Dixit's avatar
Jait Dixit committed
43
                                       val=val,
theos's avatar
theos committed
44
45
                                       domain=self.domain,
                                       field_type=self.field_type)
46

theos's avatar
theos committed
47
48
        self.datamodel = self._parse_datamodel(datamodel=datamodel,
                                               val=val)
csongor's avatar
csongor committed
49
50
51

        self.set_val(new_val=val, copy=copy)

52
    def _parse_domain(self, domain, val=None):
53
        if domain is None:
54
55
56
57
            if isinstance(val, Field):
                domain = val.domain
            else:
                domain = ()
58
        elif isinstance(domain, Space):
59
            domain = (domain,)
60
61
62
        elif not isinstance(domain, tuple):
            domain = tuple(domain)

csongor's avatar
csongor committed
63
        for d in domain:
64
            if not isinstance(d, Space):
csongor's avatar
csongor committed
65
                raise TypeError(about._errors.cstring(
66
67
                    "ERROR: Given domain contains something that is not a "
                    "nifty.space."))
csongor's avatar
csongor committed
68
69
        return domain

70
    def _parse_field_type(self, field_type, val=None):
71
        if field_type is None:
72
73
74
75
            if isinstance(val, Field):
                field_type = val.field_type
            else:
                field_type = ()
76
        elif isinstance(field_type, FieldType):
77
            field_type = (field_type,)
78
79
        elif not isinstance(field_type, tuple):
            field_type = tuple(field_type)
80
        for ft in field_type:
81
            if not isinstance(ft, FieldType):
82
                raise TypeError(about._errors.cstring(
83
                    "ERROR: Given object is not a nifty.FieldType."))
84
85
        return field_type

theos's avatar
theos committed
86
87
88
89
90
91
92
93
94
95
    def _get_axes_tuple(self, things_with_shape, start=0):
        i = start
        axes_list = []
        for thing in things_with_shape:
            l = []
            for j in range(len(thing.shape)):
                l += [i]
                i += 1
            axes_list += [tuple(l)]
        return tuple(axes_list)
96

97
    def _infer_dtype(self, dtype, val, domain, field_type):
csongor's avatar
csongor committed
98
        if dtype is None:
99
100
101
            if isinstance(val, Field) or \
               isinstance(val, distributed_data_object):
                dtype = val.dtype
theos's avatar
theos committed
102
103
104
105
106
107
108
            dtype_tuple = (np.dtype(gc['default_field_dtype']),)
        else:
            dtype_tuple = (np.dtype(dtype),)
        if domain is not None:
            dtype_tuple += tuple(np.dtype(sp.dtype) for sp in domain)
        if field_type is not None:
            dtype_tuple += tuple(np.dtype(ft.dtype) for ft in field_type)
csongor's avatar
csongor committed
109

theos's avatar
theos committed
110
        dtype = reduce(lambda x, y: np.result_type(x, y), dtype_tuple)
111

theos's avatar
theos committed
112
        return dtype
113

theos's avatar
theos committed
114
    def _parse_datamodel(self, datamodel, val):
115
116
117
118
119
120
121
122
123
124
125
126
127
128
        if datamodel is None:
            if isinstance(val, distributed_data_object):
                datamodel = val.distribution_strategy
            elif isinstance(val, Field):
                datamodel = val.datamodel
            else:
                about.warnings.cprint("WARNING: Datamodel set to default!")
                datamodel = gc['default_datamodel']
        elif datamodel not in DISTRIBUTION_STRATEGIES['all']:
            raise ValueError(about._errors.cstring(
                    "ERROR: Invalid datamodel!"))
        return datamodel

    # ---Factory methods---
129

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
    @classmethod
    def from_random(cls, random_type, domain=None, dtype=None, field_type=None,
                    datamodel=None, **kwargs):
        # create a initially empty field
        f = cls(domain=domain, dtype=dtype, field_type=field_type,
                datamodel=datamodel)

        # now use the processed input in terms of f in order to parse the
        # random arguments
        random_arguments = cls._parse_random_arguments(random_type=random_type,
                                                       f=f,
                                                       **kwargs)

        # extract the distributed_dato_object from f and apply the appropriate
        # random number generator to it
        sample = f.get_val(copy=False)
        generator_function = getattr(Random, random_type)
        sample.apply_generator(
            lambda shape: generator_function(dtype=f.dtype,
                                             shape=shape,
                                             **random_arguments))
        return f

    @staticmethod
    def _parse_random_arguments(random_type, f, **kwargs):

        if random_type == "pm1":
            random_arguments = {}

        elif random_type == "normal":
            mean = kwargs.get('mean', 0)
            std = kwargs.get('std', 1)
            random_arguments = {'mean': mean,
                                'std': std}

        elif random_type == "uniform":
            low = kwargs.get('low', 0)
            high = kwargs.get('high', 1)
            random_arguments = {'low': low,
                                'high': high}

#        elif random_type == 'syn':
#            pass

csongor's avatar
csongor committed
174
        else:
175
176
            raise KeyError(about._errors.cstring(
                "ERROR: unsupported random key '" + str(random_type) + "'."))
csongor's avatar
csongor committed
177

178
        return random_arguments
csongor's avatar
csongor committed
179

180
181
182
183
184
185
186
187
188
189
190
191
192
    # ---Powerspectral methods---

    def power_analyze(self, spaces=None, log=False, nbin=None, binbounds=None,
                      real_signal=True):
        # assert that all spaces in `self.domain` are either harmonic or
        # power_space instances
        for sp in self.domain:
            if not sp.harmonic and not isinstance(sp, PowerSpace):
                raise AttributeError(
                    "ERROR: Field has a space in `domain` which is neither "
                    "harmonic nor a PowerSpace.")

        # check if the `spaces` input is valid
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
        if spaces is None:
            if len(self.domain) == 1:
                spaces = (0,)
            else:
                raise ValueError(about._errors.cstring(
                    "ERROR: Field has multiple spaces as domain "
                    "but `spaces` is None."))

        if len(spaces) == 0:
            raise ValueError(about._errors.cstring(
                "ERROR: No space for analysis specified."))
        elif len(spaces) > 1:
            raise ValueError(about._errors.cstring(
                "ERROR: Conversion of only one space at a time is allowed."))

        space_index = spaces[0]

        if not self.domain[space_index].harmonic:
            raise ValueError(about._errors.cstring(
                "ERROR: Conversion of only one space at a time is allowed."))

215
216
217
218
219
220
        # Create the target PowerSpace instance:
        # If the associated signal-space field was real, we extract the
        # hermitian and anti-hermitian parts of `self` and put them
        # into the real and imaginary parts of the power spectrum.
        # If it was complex, all the power is put into a real power spectrum.

221
222
223
224
        distribution_strategy = \
            self.val.get_axes_local_distribution_strategy(
                self.domain_axes[space_index])

225
226
227
228
229
        if real_signal:
            power_dtype = np.dtype('complex')
        else:
            power_dtype = np.dtype('float')

230
231
232
        harmonic_domain = self.domain[space_index]
        power_domain = PowerSpace(harmonic_domain=harmonic_domain,
                                  datamodel=distribution_strategy,
233
234
                                  log=log, nbin=nbin, binbounds=binbounds,
                                  dtype=power_dtype)
235

236
        # extract pindex and rho from power_domain
237
238
        pindex = power_domain.pindex
        rho = power_domain.rho
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

        if real_signal:
            hermitian_part, anti_hermitian_part = \
                harmonic_domain.hermitian_decomposition(
                                            self.val,
                                            axes=self.domain_axes[space_index])

            [hermitian_power, anti_hermitian_power] = \
                [self._calculate_power_spectrum(
                                            x=part,
                                            pindex=pindex,
                                            rho=rho,
                                            axes=self.domain_axes[space_index])
                 for part in [hermitian_part, anti_hermitian_part]]

            power_spectrum = hermitian_power + 1j * anti_hermitian_power
        else:
            power_spectrum = self._calculate_power_spectrum(
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
                                            x=self.val,
                                            pindex=pindex,
                                            rho=rho,
                                            axes=self.domain_axes[space_index])

        # create the result field and put power_spectrum into it
        result_domain = list(self.domain)
        result_domain[space_index] = power_domain

        result_field = self.copy_empty(domain=result_domain)
        result_field.set_val(new_val=power_spectrum, copy=False)

        return result_field

    def _calculate_power_spectrum(self, x, pindex, rho, axes=None):
        fieldabs = abs(x)
        fieldabs **= 2

        if axes is not None:
            pindex = self._shape_up_pindex(
                                    pindex=pindex,
                                    target_shape=x.shape,
                                    target_strategy=x.distribution_strategy,
                                    axes=axes)
        power_spectrum = pindex.bincount(weights=fieldabs,
                                         axis=axes)
        if axes is not None:
            new_rho_shape = [1, ] * len(power_spectrum.shape)
            new_rho_shape[axes[0]] = len(rho)
            rho = rho.reshape(new_rho_shape)
        power_spectrum /= rho

        power_spectrum **= 0.5
        return power_spectrum

    def _shape_up_pindex(self, pindex, target_shape, target_strategy, axes):
        if pindex.distribution_strategy not in \
                DISTRIBUTION_STRATEGIES['global']:
            raise ValueError("ERROR: pindex's distribution strategy must be "
                             "global-type")

        if pindex.distribution_strategy in DISTRIBUTION_STRATEGIES['slicing']:
            if ((0 not in axes) or
                    (target_strategy is not pindex.distribution_strategy)):
                raise ValueError(
                    "ERROR: A slicing distributor shall not be reshaped to "
                    "something non-sliced.")

        semiscaled_shape = [1, ] * len(target_shape)
        for i in axes:
            semiscaled_shape[i] = target_shape[i]
        local_data = pindex.get_local_data(copy=False)
        semiscaled_local_data = local_data.reshape(semiscaled_shape)
        result_obj = pindex.copy_empty(global_shape=target_shape,
                                       distribution_strategy=target_strategy)
        result_obj.set_full_data(semiscaled_local_data, copy=False)

        return result_obj

316
317
318
319
320
321
322
323
    def power_synthesize(self, spaces=None, real_signal=True):
        # assert that all spaces in `self.domain` are eiher of signal-type or
        # power_space instances
        for sp in self.domain:
            if sp.harmonic and not isinstance(sp, PowerSpace):
                raise AttributeError(
                    "ERROR: Field has a space in `domain` which is neither "
                    "harmonic nor a PowerSpace.")
Jait Dixit's avatar
Jait Dixit committed
324
        pass
325
326
327

        # synthesize random fields in harmonic domain using
        # np.random.multivariate_normal(mean=[0,0], cov=[[0.5,0],[0,0.5]], size=shape)
328

theos's avatar
theos committed
329
    # ---Properties---
330

theos's avatar
theos committed
331
    def set_val(self, new_val=None, copy=False):
332
333
        new_val = self.cast(new_val)
        if copy:
theos's avatar
theos committed
334
335
336
            new_val = new_val.copy()
        self._val = new_val
        return self._val
csongor's avatar
csongor committed
337

338
339
    def get_val(self, copy=False):
        if copy:
theos's avatar
theos committed
340
            return self._val.copy()
341
        else:
theos's avatar
theos committed
342
            return self._val
csongor's avatar
csongor committed
343

theos's avatar
theos committed
344
345
346
    @property
    def val(self):
        return self._val
csongor's avatar
csongor committed
347

theos's avatar
theos committed
348
349
350
    @val.setter
    def val(self, new_val):
        self._val = self.cast(new_val)
csongor's avatar
csongor committed
351

352
353
    @property
    def shape(self):
354
355
356
357
358
359
360
        shape_tuple = ()
        shape_tuple += tuple(sp.shape for sp in self.domain)
        shape_tuple += tuple(ft.shape for ft in self.field_type)
        try:
            global_shape = reduce(lambda x, y: x + y, shape_tuple)
        except TypeError:
            global_shape = ()
csongor's avatar
csongor committed
361

362
        return global_shape
csongor's avatar
csongor committed
363

364
365
    @property
    def dim(self):
theos's avatar
theos committed
366
367
368
369
370
371
372
        dim_tuple = ()
        dim_tuple += tuple(sp.dim for sp in self.domain)
        dim_tuple += tuple(ft.dim for ft in self.field_type)
        try:
            return reduce(lambda x, y: x * y, dim_tuple)
        except TypeError:
            return 0
csongor's avatar
csongor committed
373

374
375
    @property
    def dof(self):
theos's avatar
theos committed
376
377
378
379
380
381
382
383
        dof = self.dim
        if issubclass(self.dtype.type, np.complexfloating):
            dof *= 2
        return dof

    @property
    def total_volume(self):
        volume_tuple = tuple(sp.total_volume for sp in self.domain)
384
        try:
theos's avatar
theos committed
385
            return reduce(lambda x, y: x * y, volume_tuple)
386
        except TypeError:
theos's avatar
theos committed
387
            return 0
388

theos's avatar
theos committed
389
    # ---Special unary/binary operations---
390

csongor's avatar
csongor committed
391
392
393
    def cast(self, x=None, dtype=None):
        if dtype is None:
            dtype = self.dtype
394
395
        else:
            dtype = np.dtype(dtype)
396

theos's avatar
theos committed
397
        casted_x = self._actual_cast(x, dtype=dtype)
398
399

        for ind, sp in enumerate(self.domain):
400
            casted_x = sp.complement_cast(casted_x,
theos's avatar
theos committed
401
                                          axes=self.domain_axes[ind])
402
403
404

        for ind, ft in enumerate(self.field_type):
            casted_x = ft.complement_cast(casted_x,
theos's avatar
theos committed
405
                                          axes=self.field_type_axes[ind])
406
407

        return casted_x
csongor's avatar
csongor committed
408

theos's avatar
theos committed
409
    def _actual_cast(self, x, dtype=None):
410
        if isinstance(x, Field):
csongor's avatar
csongor committed
411
412
413
414
415
            x = x.get_val()

        if dtype is None:
            dtype = self.dtype

416
417
418
419
420
        return_x = distributed_data_object(global_shape=self.shape,
                                           dtype=dtype,
                                           distribution_strategy=self.datamodel)
        return_x.set_full_data(x, copy=False)
        return return_x
theos's avatar
theos committed
421
422
423
424
425
426
427
428
429
430

    def copy(self, domain=None, dtype=None, field_type=None,
             datamodel=None):
        copied_val = self.get_val(copy=True)
        new_field = self.copy_empty(domain=domain,
                                    dtype=dtype,
                                    field_type=field_type,
                                    datamodel=datamodel)
        new_field.set_val(new_val=copied_val, copy=False)
        return new_field
csongor's avatar
csongor committed
431

theos's avatar
theos committed
432
433
434
435
    def copy_empty(self, domain=None, dtype=None, field_type=None,
                   datamodel=None):
        if domain is None:
            domain = self.domain
csongor's avatar
csongor committed
436
        else:
theos's avatar
theos committed
437
            domain = self._parse_domain(domain)
csongor's avatar
csongor committed
438

theos's avatar
theos committed
439
440
441
442
        if dtype is None:
            dtype = self.dtype
        else:
            dtype = np.dtype(dtype)
csongor's avatar
csongor committed
443

theos's avatar
theos committed
444
445
446
447
        if field_type is None:
            field_type = self.field_type
        else:
            field_type = self._parse_field_type(field_type)
csongor's avatar
csongor committed
448

theos's avatar
theos committed
449
450
        if datamodel is None:
            datamodel = self.datamodel
csongor's avatar
csongor committed
451

theos's avatar
theos committed
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
        fast_copyable = True
        try:
            for i in xrange(len(self.domain)):
                if self.domain[i] is not domain[i]:
                    fast_copyable = False
                    break
            for i in xrange(len(self.field_type)):
                if self.field_type[i] is not field_type[i]:
                    fast_copyable = False
                    break
        except IndexError:
            fast_copyable = False

        if (fast_copyable and dtype == self.dtype and
                datamodel == self.datamodel):
            new_field = self._fast_copy_empty()
        else:
            new_field = Field(domain=domain,
                              dtype=dtype,
                              field_type=field_type,
                              datamodel=datamodel)
        return new_field
csongor's avatar
csongor committed
474

theos's avatar
theos committed
475
476
477
478
479
480
481
482
483
484
485
486
487
488
    def _fast_copy_empty(self):
        # make an empty field
        new_field = EmptyField()
        # repair its class
        new_field.__class__ = self.__class__
        # copy domain, codomain and val
        for key, value in self.__dict__.items():
            if key != 'val':
                new_field.__dict__[key] = value
            else:
                new_field.__dict__[key] = self.val.copy_empty()
        return new_field

    def weight(self, power=1, inplace=False, spaces=None):
489
        if inplace:
csongor's avatar
csongor committed
490
491
492
493
            new_field = self
        else:
            new_field = self.copy_empty()

494
        new_val = self.get_val(copy=False)
csongor's avatar
csongor committed
495

csongor's avatar
csongor committed
496
        if spaces is None:
theos's avatar
theos committed
497
498
499
            spaces = range(len(self.domain))
        else:
            spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
csongor's avatar
csongor committed
500

501
        for ind, sp in enumerate(self.domain):
theos's avatar
theos committed
502
503
504
505
506
            if ind in spaces:
                new_val = sp.weight(new_val,
                                    power=power,
                                    axes=self.domain_axes[ind],
                                    inplace=inplace)
507
508

        new_field.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
509
510
        return new_field

theos's avatar
theos committed
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
    def dot(self, x=None, bare=False):
        if isinstance(x, Field):
            try:
                assert len(x.domain) == len(self.domain)
                for index in xrange(len(self.domain)):
                    assert x.domain[index] == self.domain[index]
                for index in xrange(len(self.field_type)):
                    assert x.field_type[index] == self.field_type[index]
            except AssertionError:
                raise ValueError(about._errors.cstring(
                    "ERROR: domains are incompatible."))
            # extract the data from x and try to dot with this
            x = x.get_val(copy=False)

        # Compute the dot respecting the fact of discrete/continous spaces
        if bare:
            y = self
        else:
            y = self.weight(power=1)

        y = y.get_val(copy=False)

        # Cast the input in order to cure dtype and shape differences
        x = self.cast(x)

        dotted = x.conjugate() * y

        return dotted.sum()

540
    def norm(self, q=2):
csongor's avatar
csongor committed
541
542
543
544
545
546
547
548
549
550
551
552
553
554
        """
            Computes the Lq-norm of the field values.

            Parameters
            ----------
            q : scalar
                Parameter q of the Lq-norm (default: 2).

            Returns
            -------
            norm : scalar
                The Lq-norm of the field values.

        """
555
        if q == 2:
556
            return (self.dot(x=self)) ** (1 / 2)
csongor's avatar
csongor committed
557
        else:
558
            return self.dot(x=self ** (q - 1)) ** (1 / q)
csongor's avatar
csongor committed
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574

    def conjugate(self, inplace=False):
        """
            Computes the complex conjugate of the field.

            Returns
            -------
            cc : field
                The complex conjugated field.

        """
        if inplace:
            work_field = self
        else:
            work_field = self.copy_empty()

575
        new_val = self.get_val(copy=False)
theos's avatar
theos committed
576
        new_val = new_val.conjugate()
577
        work_field.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
578
579
580

        return work_field

theos's avatar
theos committed
581
    # ---General unary/contraction methods---
582

theos's avatar
theos committed
583
584
    def __pos__(self):
        return self.copy()
585

theos's avatar
theos committed
586
587
588
589
    def __neg__(self):
        return_field = self.copy_empty()
        new_val = -self.get_val(copy=False)
        return_field.set_val(new_val, copy=False)
csongor's avatar
csongor committed
590
591
        return return_field

theos's avatar
theos committed
592
593
594
595
596
    def __abs__(self):
        return_field = self.copy_empty()
        new_val = abs(self.get_val(copy=False))
        return_field.set_val(new_val, copy=False)
        return return_field
csongor's avatar
csongor committed
597

theos's avatar
theos committed
598
599
600
601
602
603
    def _contraction_helper(self, op, spaces, types):
        # build a list of all axes
        if spaces is None:
            spaces = xrange(len(self.domain))
        else:
            spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
csongor's avatar
csongor committed
604

theos's avatar
theos committed
605
606
607
608
        if types is None:
            types = xrange(len(self.field_type))
        else:
            types = utilities.cast_axis_to_tuple(types, len(self.field_type))
609

theos's avatar
theos committed
610
611
612
613
        axes_list = ()
        axes_list += tuple(self.domain_axes[sp_index] for sp_index in spaces)
        axes_list += tuple(self.field_type_axes[ft_index] for
                           ft_index in types)
614
        try:
theos's avatar
theos committed
615
            axes_list = reduce(lambda x, y: x+y, axes_list)
616
        except TypeError:
theos's avatar
theos committed
617
            axes_list = ()
csongor's avatar
csongor committed
618

theos's avatar
theos committed
619
620
621
        # perform the contraction on the d2o
        data = self.get_val(copy=False)
        data = getattr(data, op)(axis=axes_list)
csongor's avatar
csongor committed
622

theos's avatar
theos committed
623
624
625
        # check if the result is scalar or if a result_field must be constr.
        if np.isscalar(data):
            return data
csongor's avatar
csongor committed
626
        else:
theos's avatar
theos committed
627
628
629
630
631
632
633
634
635
636
637
            return_domain = tuple(self.domain[i]
                                  for i in xrange(len(self.domain))
                                  if i not in spaces)
            return_field_type = tuple(self.field_type[i]
                                      for i in xrange(len(self.field_type))
                                      if i not in types)
            return_field = Field(domain=return_domain,
                                 val=data,
                                 field_type=return_field_type,
                                 copy=False)
            return return_field
csongor's avatar
csongor committed
638

theos's avatar
theos committed
639
640
    def sum(self, spaces=None, types=None):
        return self._contraction_helper('sum', spaces, types)
csongor's avatar
csongor committed
641

theos's avatar
theos committed
642
643
    def prod(self, spaces=None, types=None):
        return self._contraction_helper('prod', spaces, types)
csongor's avatar
csongor committed
644

theos's avatar
theos committed
645
646
    def all(self, spaces=None, types=None):
        return self._contraction_helper('all', spaces, types)
csongor's avatar
csongor committed
647

theos's avatar
theos committed
648
649
    def any(self, spaces=None, types=None):
        return self._contraction_helper('any', spaces, types)
csongor's avatar
csongor committed
650

theos's avatar
theos committed
651
652
    def min(self, spaces=None, types=None):
        return self._contraction_helper('min', spaces, types)
csongor's avatar
csongor committed
653

theos's avatar
theos committed
654
655
    def nanmin(self, spaces=None, types=None):
        return self._contraction_helper('nanmin', spaces, types)
csongor's avatar
csongor committed
656

theos's avatar
theos committed
657
658
    def max(self, spaces=None, types=None):
        return self._contraction_helper('max', spaces, types)
csongor's avatar
csongor committed
659

theos's avatar
theos committed
660
661
    def nanmax(self, spaces=None, types=None):
        return self._contraction_helper('nanmax', spaces, types)
csongor's avatar
csongor committed
662

theos's avatar
theos committed
663
664
    def mean(self, spaces=None, types=None):
        return self._contraction_helper('mean', spaces, types)
csongor's avatar
csongor committed
665

theos's avatar
theos committed
666
667
    def var(self, spaces=None, types=None):
        return self._contraction_helper('var', spaces, types)
csongor's avatar
csongor committed
668

theos's avatar
theos committed
669
670
    def std(self, spaces=None, types=None):
        return self._contraction_helper('std', spaces, types)
csongor's avatar
csongor committed
671

theos's avatar
theos committed
672
    # ---General binary methods---
csongor's avatar
csongor committed
673

theos's avatar
theos committed
674
    def _binary_helper(self, other, op, inplace=False):
csongor's avatar
csongor committed
675
        # if other is a field, make sure that the domains match
676
        if isinstance(other, Field):
theos's avatar
theos committed
677
678
679
680
            try:
                assert len(other.domain) == len(self.domain)
                for index in xrange(len(self.domain)):
                    assert other.domain[index] == self.domain[index]
681
                assert len(other.field_type) == len(self.field_type)
theos's avatar
theos committed
682
683
684
685
686
687
                for index in xrange(len(self.field_type)):
                    assert other.field_type[index] == self.field_type[index]
            except AssertionError:
                raise ValueError(about._errors.cstring(
                    "ERROR: domains are incompatible."))
            other = other.get_val(copy=False)
csongor's avatar
csongor committed
688

theos's avatar
theos committed
689
690
        self_val = self.get_val(copy=False)
        return_val = getattr(self_val, op)(other)
csongor's avatar
csongor committed
691
692
693
694
695
696

        if inplace:
            working_field = self
        else:
            working_field = self.copy_empty()

theos's avatar
theos committed
697
        working_field.set_val(return_val, copy=False)
csongor's avatar
csongor committed
698
699
700
        return working_field

    def __add__(self, other):
theos's avatar
theos committed
701
        return self._binary_helper(other, op='__add__')
702

703
    def __radd__(self, other):
theos's avatar
theos committed
704
        return self._binary_helper(other, op='__radd__')
csongor's avatar
csongor committed
705
706

    def __iadd__(self, other):
theos's avatar
theos committed
707
        return self._binary_helper(other, op='__iadd__', inplace=True)
csongor's avatar
csongor committed
708
709

    def __sub__(self, other):
theos's avatar
theos committed
710
        return self._binary_helper(other, op='__sub__')
csongor's avatar
csongor committed
711
712

    def __rsub__(self, other):
theos's avatar
theos committed
713
        return self._binary_helper(other, op='__rsub__')
csongor's avatar
csongor committed
714
715

    def __isub__(self, other):
theos's avatar
theos committed
716
        return self._binary_helper(other, op='__isub__', inplace=True)
csongor's avatar
csongor committed
717
718

    def __mul__(self, other):
theos's avatar
theos committed
719
        return self._binary_helper(other, op='__mul__')
720

721
    def __rmul__(self, other):
theos's avatar
theos committed
722
        return self._binary_helper(other, op='__rmul__')
csongor's avatar
csongor committed
723
724

    def __imul__(self, other):
theos's avatar
theos committed
725
        return self._binary_helper(other, op='__imul__', inplace=True)
csongor's avatar
csongor committed
726
727

    def __div__(self, other):
theos's avatar
theos committed
728
        return self._binary_helper(other, op='__div__')
csongor's avatar
csongor committed
729
730

    def __rdiv__(self, other):
theos's avatar
theos committed
731
        return self._binary_helper(other, op='__rdiv__')
csongor's avatar
csongor committed
732
733

    def __idiv__(self, other):
theos's avatar
theos committed
734
        return self._binary_helper(other, op='__idiv__', inplace=True)
735

csongor's avatar
csongor committed
736
    def __pow__(self, other):
theos's avatar
theos committed
737
        return self._binary_helper(other, op='__pow__')
csongor's avatar
csongor committed
738
739

    def __rpow__(self, other):
theos's avatar
theos committed
740
        return self._binary_helper(other, op='__rpow__')
csongor's avatar
csongor committed
741
742

    def __ipow__(self, other):
theos's avatar
theos committed
743
        return self._binary_helper(other, op='__ipow__', inplace=True)
csongor's avatar
csongor committed
744
745

    def __lt__(self, other):
theos's avatar
theos committed
746
        return self._binary_helper(other, op='__lt__')
csongor's avatar
csongor committed
747
748

    def __le__(self, other):
theos's avatar
theos committed
749
        return self._binary_helper(other, op='__le__')
csongor's avatar
csongor committed
750
751
752
753
754

    def __ne__(self, other):
        if other is None:
            return True
        else:
theos's avatar
theos committed
755
            return self._binary_helper(other, op='__ne__')
csongor's avatar
csongor committed
756
757
758
759
760

    def __eq__(self, other):
        if other is None:
            return False
        else:
theos's avatar
theos committed
761
            return self._binary_helper(other, op='__eq__')
csongor's avatar
csongor committed
762
763

    def __ge__(self, other):
theos's avatar
theos committed
764
        return self._binary_helper(other, op='__ge__')
csongor's avatar
csongor committed
765
766

    def __gt__(self, other):
theos's avatar
theos committed
767
768
769
770
771
772
773
774
775
776
777
778
779
        return self._binary_helper(other, op='__gt__')

    def __repr__(self):
        return "<nifty_core.field>"

    def __str__(self):
        minmax = [self.min(), self.max()]
        mean = self.mean()
        return "nifty_core.field instance\n- domain      = " + \
               repr(self.domain) + \
               "\n- val         = " + repr(self.get_val()) + \
               "\n  - min.,max. = " + str(minmax) + \
               "\n  - mean = " + str(mean)
csongor's avatar
csongor committed
780

781

782
class EmptyField(Field):
csongor's avatar
csongor committed
783
784
    def __init__(self):
        pass