nifty_core.py 450 KB
Newer Older
Marco Selig's avatar
Marco Selig committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
## NIFTY (Numerical Information Field Theory) has been developed at the
## Max-Planck-Institute for Astrophysics.
##
## Copyright (C) 2013 Max-Planck-Society
##
## Author: Marco Selig
## Project homepage: <http://www.mpa-garching.mpg.de/ift/nifty/>
##
## This program is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
## See the GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program. If not, see <http://www.gnu.org/licenses/>.

"""
    ..                  __   ____   __
    ..                /__/ /   _/ /  /_
    ..      __ ___    __  /  /_  /   _/  __   __
    ..    /   _   | /  / /   _/ /  /   /  / /  /
    ..   /  / /  / /  / /  /   /  /_  /  /_/  /
    ..  /__/ /__/ /__/ /__/    \___/  \___   /  core
    ..                               /______/

    .. The NIFTY project homepage is http://www.mpa-garching.mpg.de/ift/nifty/

    NIFTY [#]_, "Numerical Information Field Theory", is a versatile
    library designed to enable the development of signal inference algorithms
    that operate regardless of the underlying spatial grid and its resolution.
    Its object-oriented framework is written in Python, although it accesses
    libraries written in Cython, C++, and C for efficiency.

    NIFTY offers a toolkit that abstracts discretized representations of
    continuous spaces, fields in these spaces, and operators acting on fields
    into classes. Thereby, the correct normalization of operations on fields is
    taken care of automatically without concerning the user. This allows for an
    abstract formulation and programming of inference algorithms, including
    those derived within information field theory. Thus, NIFTY permits its user
Marco Selig's avatar
Marco Selig committed
45
    to rapidly prototype algorithms in 1D and then apply the developed code in
Marco Selig's avatar
Marco Selig committed
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
    higher-dimensional settings of real world problems. The set of spaces on
    which NIFTY operates comprises point sets, n-dimensional regular grids,
    spherical spaces, their harmonic counterparts, and product spaces
    constructed as combinations of those.

    Class & Feature Overview
    ------------------------
    The NIFTY library features three main classes: **spaces** that represent
    certain grids, **fields** that are defined on spaces, and **operators**
    that apply to fields.

    Overview of all (core) classes:

    .. - switch
    .. - notification
    .. - _about
    .. - random
    .. - space
    ..     - point_space
    ..     - rg_space
    ..     - lm_space
    ..     - gl_space
    ..     - hp_space
    ..     - nested_space
    .. - field
    .. - operator
    ..     - diagonal_operator
    ..         - power_operator
    ..     - projection_operator
    ..     - vecvec_operator
    ..     - response_operator
    .. - probing
    ..     - trace_probing
    ..     - diagonal_probing

    .. automodule:: nifty

    :py:class:`space`

    - :py:class:`point_space`
    - :py:class:`rg_space`
    - :py:class:`lm_space`
    - :py:class:`gl_space`
    - :py:class:`hp_space`
    - :py:class:`nested_space`

    :py:class:`field`

    :py:class:`operator`

    - :py:class:`diagonal_operator`
        - :py:class:`power_operator`
    - :py:class:`projection_operator`
    - :py:class:`vecvec_operator`
    - :py:class:`response_operator`

    :py:class:`probing`

    - :py:class:`trace_probing`
    - :py:class:`diagonal_probing`

    References
    ----------
Marco Selig's avatar
Marco Selig committed
109
    .. [#] Selig et al., "NIFTY -- Numerical Information Field Theory --
Marco Selig's avatar
Marco Selig committed
110 111
        a versatile Python library for signal inference",
        `A&A, vol. 554, id. A26 <http://dx.doi.org/10.1051/0004-6361/201321236>`_,
Marco Selig's avatar
Marco Selig committed
112
        2013; `arXiv:1301.4499 <http://www.arxiv.org/abs/1301.4499>`_
Marco Selig's avatar
Marco Selig committed
113 114

"""
Marco Selig's avatar
Marco Selig committed
115
## standard libraries
Marco Selig's avatar
Marco Selig committed
116 117 118 119 120
from __future__ import division
import os
#import sys
from sys import stdout as so
import numpy as np
Marco Selig's avatar
Marco Selig committed
121 122 123 124 125
import pylab as pl
from matplotlib.colors import LogNorm as ln
from matplotlib.ticker import LogFormatter as lf
from multiprocessing import Pool as mp
## third party libraries
Marco Selig's avatar
Marco Selig committed
126 127 128
import gfft as gf
import healpy as hp
import libsharp_wrapper_gl as gl
Marco Selig's avatar
Marco Selig committed
129
## internal libraries
Marco Selig's avatar
Marco Selig committed
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
import smoothing as gs
import powerspectrum as gp


pi = 3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679


##-----------------------------------------------------------------------------

class switch(object):
    """
        ..                            __   __               __
        ..                          /__/ /  /_            /  /
        ..     _______  __     __   __  /   _/  _______  /  /___
        ..   /  _____/ |  |/\/  / /  / /  /   /   ____/ /   _   |
        ..  /_____  /  |       / /  / /  /_  /  /____  /  / /  /
        .. /_______/   |__/\__/ /__/  \___/  \______/ /__/ /__/  class

        NIFTY support class for switches.

        Parameters
        ----------
        default : bool
            Default status of the switch (default: False).

        See Also
        --------
        notification : A derived class for displaying notifications.

        Examples
        --------
        >>> option = switch()
        >>> option.status
        False
        >>> option
        OFF
        >>> print(option)
        OFF
        >>> option.on()
        >>> print(option)
        ON

        Attributes
        ----------
        status : bool
            Status of the switch.

    """
    def __init__(self,default=False):
        """
            Initilizes the switch and sets the `status`

            Parameters
            ----------
            default : bool
                Default status of the switch (default: False).

        """
        self.status = bool(default)

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    def on(self):
        """
            Switches the `status` to True.

        """
        self.status = True

    def off(self):
        """
            Switches the `status` to False.

        """
        self.status = False


    def toggle(self):
        """
            Switches the `status`.

        """
        self.status = not self.status

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    def __repr__(self):
        if(self.status):
            return "ON"
        else:
            return "OFF"

##-----------------------------------------------------------------------------

##-----------------------------------------------------------------------------

class notification(switch):
    """
        ..                           __     __   ____   __                       __     __
        ..                         /  /_  /__/ /   _/ /__/                     /  /_  /__/
        ..     __ ___    ______   /   _/  __  /  /_   __   _______   ____ __  /   _/  __   ______    __ ___
        ..   /   _   | /   _   | /  /   /  / /   _/ /  / /   ____/ /   _   / /  /   /  / /   _   | /   _   |
        ..  /  / /  / /  /_/  / /  /_  /  / /  /   /  / /  /____  /  /_/  / /  /_  /  / /  /_/  / /  / /  /
        .. /__/ /__/  \______/  \___/ /__/ /__/   /__/  \______/  \______|  \___/ /__/  \______/ /__/ /__/  class

        NIFTY support class for notifications.

        Parameters
        ----------
        default : bool
            Default status of the switch (default: False).
        ccode : string
            Color code as string (default: "\033[0m"). The surrounding special
            characters are added if missing.

        Notes
        -----
        The color code is a special ANSI escape code, for a list of valid codes
        see [#]_. Multiple codes can be combined by seperating them with a
        semicolon ';'.

        References
        ----------
        .. [#] Wikipedia, `ANSI escape code <http://en.wikipedia.org/wiki/ANSI_escape_code#graphics>`_.

        Examples
        --------
        >>> note = notification()
        >>> note.status
        True
        >>> note.cprint("This is noteworthy.")
        This is noteworthy.
        >>> note.cflush("12"); note.cflush('3')
        123
        >>> note.off()
        >>> note.cprint("This is noteworthy.")
        >>>

        Raises
        ------
        TypeError
            If `ccode` is no string.

        Attributes
        ----------
        status : bool
            Status of the switch.
        ccode : string
            Color code as string.

    """
    _code = "\033[0m" ## "\033[39;49m"

    def __init__(self,default=True,ccode="\033[0m"):
        """
            Initializes the notification and sets `status` and `ccode`

            Parameters
            ----------
            default : bool
                Default status of the switch (default: False).
            ccode : string
                Color code as string (default: "\033[0m"). The surrounding
                special characters are added if missing.

            Raises
            ------
            TypeError
                If `ccode` is no string.

        """
        self.status = bool(default)

        ## check colour code
        if(not isinstance(ccode,str)):
            raise TypeError(about._errors.cstring("ERROR: invalid input."))
        if(ccode[0]!="\033"):
            ccode = "\033"+ccode
        if(ccode[1]!='['):
            ccode = ccode[0]+'['+ccode[1:]
        if(ccode[-1]!='m'):
            ccode = ccode+'m'
        self.ccode = ccode

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    def set_ccode(self,newccode=None):
        """
            Resets the the `ccode` string.

            Parameters
            ----------
            newccode : string
                Color code as string (default: "\033[0m"). The surrounding
                characters "\033", '[', and 'm' are added if missing.

            Returns
            -------
            None

            Raises
            ------
            TypeError
                If `ccode` is no string.

            Examples
            --------
            >>> note = notification()
            >>> note.set_ccode("31;1") ## "31;1" corresponds to red and bright

        """
        if(newccode is None):
            newccode = self._code
        else:
            ## check colour code
            if(not isinstance(newccode,str)):
                raise TypeError(about._errors.cstring("ERROR: invalid input."))
            if(newccode[0]!="\033"):
                newccode = "\033"+newccode
            if(newccode[1]!='['):
                newccode = newccode[0]+'['+newccode[1:]
            if(newccode[-1]!='m'):
                newccode = newccode+'m'
        self.ccode = newccode

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    def cstring(self,subject):
        """
            Casts an object to a string and augments that with a colour code.

            Parameters
            ----------
            subject : {string, object}
                String to be augmented with a color code. A given object is
                cast to its string representation by :py:func:`str`.

            Returns
            -------
            cstring : string
                String augmented with a color code.

        """
        return self.ccode+str(subject)+self._code

    def cflush(self,subject):
        """
            Flushes an object in its colour coded sting representation to the
            standard output (*without* line break).

            Parameters
            ----------
            subject : {string, object}
                String to be flushed. A given object is
                cast to a string by :py:func:`str`.

            Returns
            -------
            None

        """
        if(self.status):
            so.write(self.cstring(subject))
            so.flush()

    def cprint(self,subject):
        """
            Flushes an object in its colour coded sting representation to the
            standard output (*with* line break).

            Parameters
            ----------
            subject : {string, object}
                String to be flushed. A given object is
                cast to a string by :py:func:`str`.

            Returns
            -------
            None

        """
        if(self.status):
            so.write(self.cstring(subject)+"\n")
            so.flush()

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    def __repr__(self):
        if(self.status):
            return self.cstring("ON")
        else:
            return self.cstring("OFF")

##-----------------------------------------------------------------------------

##-----------------------------------------------------------------------------

class _about(object): ## nifty support class for global settings
    """
        NIFTY support class for global settings.

        .. warning::
            Turning off the `_error` notification will suppress all NIFTY error
            strings (not recommended).

        Examples
        --------
        >>> from nifty import *
        >>> about
        nifty version 0.2.0
        >>> print(about)
        nifty version 0.2.0
        - errors          = ON (immutable)
        - warnings        = ON
        - infos           = OFF
        - multiprocessing = ON
        - hermitianize    = ON
        - lm2gl           = ON
        >>> about.infos.on()
        >>> about.about.save_config()

        >>> from nifty import *
        INFO: nifty version 0.2.0
        >>> print(about)
        nifty version 0.2.0
        - errors          = ON (immutable)
        - warnings        = ON
        - infos           = ON
        - multiprocessing = ON
        - hermitianize    = ON
        - lm2gl           = ON

        Attributes
        ----------
        warnings : notification
            Notification instance controlling whether warings shall be printed.
        infos : notification
            Notification instance controlling whether information shall be
            printed.
        multiprocessing : switch
            Switch instance controlling whether multiprocessing might be
            performed.
        hermitianize : switch
            Switch instance controlling whether hermitian symmetry for certain
            :py:class:`rg_space` instances is inforced.
        lm2gl : switch
            Switch instance controlling whether default target of a
            :py:class:`lm_space` instance is a :py:class:`gl_space` or a
            :py:class:`hp_space` instance.

    """
    def __init__(self):
        """
            Initializes the _about and sets the attributes.

        """
        ## version
Marco Selig's avatar
Marco Selig committed
487
        self._version = "0.4.0"
Marco Selig's avatar
Marco Selig committed
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633

        ## switches and notifications
        self._errors = notification(default=True,ccode=notification._code)
        self.warnings = notification(default=True,ccode=notification._code)
        self.infos =  notification(default=False,ccode=notification._code)
        self.multiprocessing = switch(default=True)
        self.hermitianize = switch(default=True)
        self.lm2gl = switch(default=True)

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    def load_config(self,force=True):
        """
            Reads the configuration file "~/.nifty/nifty_config".

            Parameters
            ----------
            force : bool
                Whether to cause an error if the file does not exsist or not.

            Returns
            -------
            None

            Raises
            ------
            ValueError
                If the configuration file is malformed.
            OSError
                If the configuration file does not exist.

        """
        nconfig = os.path.expanduser('~')+"/.nifty/nifty_config"
        if(os.path.isfile(nconfig)):
            rawconfig = []
            with open(nconfig,'r') as configfile:
                for ll in configfile:
                    if(not ll.startswith('#')):
                        rawconfig += ll.split()
            try:
                self._errors = notification(default=True,ccode=rawconfig[0])
                self.warnings = notification(default=int(rawconfig[1]),ccode=rawconfig[2])
                self.infos =  notification(default=int(rawconfig[3]),ccode=rawconfig[4])
                self.multiprocessing = switch(default=int(rawconfig[5]))
                self.hermitianize = switch(default=int(rawconfig[6]))
                self.lm2gl = switch(default=int(rawconfig[7]))
            except(IndexError):
                raise ValueError(about._errors.cstring("ERROR: '"+nconfig+"' damaged."))
        elif(force):
            raise OSError(about._errors.cstring("ERROR: '"+nconfig+"' nonexisting."))

    def save_config(self):
        """
            Writes to the configuration file "~/.nifty/nifty_config".

            Returns
            -------
            None

        """
        rawconfig = [self._errors.ccode[2:-1],str(int(self.warnings.status)),self.warnings.ccode[2:-1],str(int(self.infos.status)),self.infos.ccode[2:-1],str(int(self.multiprocessing.status)),str(int(self.hermitianize.status)),str(int(self.lm2gl.status))]

        nconfig = os.path.expanduser('~')+"/.nifty/nifty_config"
        if(os.path.isfile(nconfig)):
            rawconfig = [self._errors.ccode[2:-1],str(int(self.warnings.status)),self.warnings.ccode[2:-1],str(int(self.infos.status)),self.infos.ccode[2:-1],str(int(self.multiprocessing.status)),str(int(self.hermitianize.status)),str(int(self.lm2gl.status))]
            nconfig = os.path.expanduser('~')+"/.nifty/nifty_config"

            with open(nconfig,'r') as sourcefile:
                with open(nconfig+"_",'w') as targetfile:
                    for ll in sourcefile:
                        if(ll.startswith('#')):
                            targetfile.write(ll)
                        else:
                            ll = ll.replace(ll.split()[0],rawconfig[0]) ## one(!) per line
                            rawconfig = rawconfig[1:]
                            targetfile.write(ll)
            os.rename(nconfig+"_",nconfig) ## overwrite old congiguration
        else:
            if(not os.path.exists(os.path.expanduser('~')+"/.nifty")):
                os.makedirs(os.path.expanduser('~')+"/.nifty")
            with open(nconfig,'w') as targetfile:
                for rr in rawconfig:
                    targetfile.write(rr+"\n") ## one(!) per line

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    def __repr__(self):
        return "nifty version "+self._version

    def __str__(self):
        return "nifty version "+self._version+"\n- errors          = "+self._errors.cstring("ON")+" (immutable)\n- warnings        = "+str(self.warnings)+"\n- infos           = "+str(self.infos)+"\n- multiprocessing = "+str(self.multiprocessing)+"\n- hermitianize    = "+str(self.hermitianize)+"\n- lm2gl           = "+str(self.lm2gl)

##-----------------------------------------------------------------------------

## set global instance
about = _about()
about.load_config(force=False)
about.infos.cprint("INFO: "+about.__repr__())





##-----------------------------------------------------------------------------

class random(object):
    """
        ..                                          __
        ..                                        /  /
        ..       _____   ____ __   __ ___    ____/  /  ______    __ ____ ___
        ..     /   __/ /   _   / /   _   | /   _   / /   _   | /   _    _   |
        ..    /  /    /  /_/  / /  / /  / /  /_/  / /  /_/  / /  / /  / /  /
        ..   /__/     \______| /__/ /__/  \______|  \______/ /__/ /__/ /__/  class

        NIFTY (static) class for pseudo random number generators.

    """
    __init__ = None

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    @staticmethod
    def arguments(domain,**kwargs):
        """
            Analyses the keyword arguments for supported or necessary ones.

            Parameters
            ----------
            domain : space
                Space wherein the random field values live.
            random : string, *optional*
                Specifies a certain distribution to be drwan from using a
                pseudo random number generator. Supported distributions are:

                - "pm1" (uniform distribution over {+1,-1} or {+1,+i,-1,-i}
                - "gau" (normal distribution with zero-mean and a given
                    standard deviation or variance)
                - "syn" (synthesizes from a given power spectrum)
                - "uni" (uniform distribution over [vmin,vmax[)

            dev : {scalar, list, ndarray, field}, *optional*
                Standard deviation of the normal distribution if
                ``random == "gau"`` (default: None).
            var : {scalar, list, ndarray, field}, *optional*
                Variance of the normal distribution (outranks the standard
                deviation) if ``random == "gau"`` (default: None).
Marco Selig's avatar
Marco Selig committed
634
            spec : {scalar, list, array, field, function}, *optional*
Marco Selig's avatar
Marco Selig committed
635 636 637 638
                Power spectrum for ``random == "syn"`` (default: 1).
            size : integer, *optional*
                Number of irreducible bands for ``random == "syn"``
                (default: None).
639 640 641 642 643
            pindex : numpy.ndarray, *optional*
                Indexing array giving the power spectrum index of each band
                (default: None).
            kindex : numpy.ndarray, *optional*
                Scale of each irreducible band (default: None).
Marco Selig's avatar
Marco Selig committed
644 645 646 647 648 649 650 651 652 653
            vmax : {scalar, list, ndarray, field}, *optional*
                Upper limit of the uniform distribution if ``random == "uni"``
                (default: 1).

            Returns
            -------
            arg : list
                Ordered list of arguments (to be processed in
                ``get_random_values`` of the domain).

654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
            Other Parameters
            ----------------
            codomain : nifty.space, *optional*
                A compatible codomain for power indexing (default: None).
            log : bool, *optional*
                Flag specifying if the spectral binning is performed on logarithmic
                scale or not; if set, the number of used bins is set
                automatically (if not given otherwise); by default no binning
                is done (default: None).
            nbin : integer, *optional*
                Number of used spectral bins; if given `log` is set to ``False``;
                integers below the minimum of 3 induce an automatic setting;
                by default no binning is done (default: None).
            binbounds : {list, array}, *optional*
                User specific inner boundaries of the bins, which are preferred
                over the above parameters; by default no binning is done
                (default: None).            vmin : {scalar, list, ndarray, field}, *optional*
                Lower limit of the uniform distribution if ``random == "uni"``
                (default: 0).

Marco Selig's avatar
Marco Selig committed
674 675 676 677 678 679
            Raises
            ------
            KeyError
                If the `random` key is not supporrted.

        """
Marco Selig's avatar
Marco Selig committed
680
        if("random" in kwargs):
Marco Selig's avatar
Marco Selig committed
681 682 683 684 685 686 687 688
            key = kwargs.get("random")
        else:
            return None

        if(key=="pm1"):
            return [key]

        elif(key=="gau"):
Marco Selig's avatar
Marco Selig committed
689
            if("mean" in kwargs):
Marco Selig's avatar
Marco Selig committed
690 691 692
                mean = domain.enforce_values(kwargs.get("mean"),extend=False)
            else:
                mean = None
Marco Selig's avatar
Marco Selig committed
693
            if("dev" in kwargs):
Marco Selig's avatar
Marco Selig committed
694 695 696
                dev = domain.enforce_values(kwargs.get("dev"),extend=False)
            else:
                dev = None
Marco Selig's avatar
Marco Selig committed
697
            if("var" in kwargs):
Marco Selig's avatar
Marco Selig committed
698 699 700 701 702 703
                var = domain.enforce_values(kwargs.get("var"),extend=False)
            else:
                var = None
            return [key,mean,dev,var]

        elif(key=="syn"):
704
            ## explicit power indices
Marco Selig's avatar
Marco Selig committed
705
            if("pindex" in kwargs)and("kindex" in kwargs):
706 707 708 709 710 711 712 713 714 715 716
                kindex = kwargs.get("kindex")
                if(kindex is None):
                    spec = domain.enforce_power(kwargs.get("spec",1),size=kwargs.get("size",None))
                    kpack = None
                else:
                    spec = domain.enforce_power(kwargs.get("spec",1),size=len(kindex),kindex=kindex)
                    pindex = kwargs.get("pindex",None)
                    if(pindex is None):
                        kpack = None
                    else:
                        kpack = [pindex,kindex]
717
            ## implicit power indices
718
            else:
719 720 721
                try:
                    domain.set_power_indices(**kwargs)
                except:
722 723 724 725 726
                    codomain = kwargs.get("codomain",None)
                    if(codomain is None):
                        spec = domain.enforce_power(kwargs.get("spec",1),size=kwargs.get("size",None))
                        kpack = None
                    else:
727 728
                        domain.check_codomain(codomain)
                        codomain.set_power_indices(**kwargs)
729 730 731
                        kindex = codomain.power_indices.get("kindex")
                        spec = domain.enforce_power(kwargs.get("spec",1),size=len(kindex),kindex=kindex,codomain=codomain)
                        kpack = [codomain.power_indices.get("pindex"),kindex]
732
                else:
733 734 735 736
                    kindex = domain.power_indixes.get("kindex")
                    spec = domain.enforce_power(kwargs.get("spec",1),size=len(kindex),kindex=kindex)
                    kpack = [domain.power_indixes.get("pindex"),kindex]
            return [key,spec,kpack]
Marco Selig's avatar
Marco Selig committed
737 738

        elif(key=="uni"):
Marco Selig's avatar
Marco Selig committed
739
            if("vmin" in kwargs):
Marco Selig's avatar
Marco Selig committed
740 741 742
                vmin = domain.enforce_values(kwargs.get("vmin"),extend=False)
            else:
                vmin = 0
Marco Selig's avatar
Marco Selig committed
743
            if("vmax" in kwargs):
Marco Selig's avatar
Marco Selig committed
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
                vmax = domain.enforce_values(kwargs.get("vmax"),extend=False)
            else:
                vmax = 1
            return [key,vmin,vmax]

        else:
            raise KeyError(about._errors.cstring("ERROR: unsupported random key '"+str(key)+"'."))

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    @staticmethod
    def pm1(datatype=np.int,shape=1):
        """
            Generates random field values according to an uniform distribution
            over {+1,-1} or {+1,+i,-1,-i}, respectively.

            Parameters
            ----------
            datatype : type, *optional*
                Data type of the field values (default: np.int).
            shape : {integer, tuple, list, ndarray}, *optional*
                Split up dimension of the space (default: 1).

            Returns
            -------
            x : ndarray
                Random field values (with correct dtype and shape).

        """
        size = np.prod(shape,axis=0,dtype=np.int,out=None)

        if(datatype in [np.complex64,np.complex128]):
            x = np.array([1+0j,0+1j,-1+0j,0-1j],dtype=datatype)[np.random.randint(4,high=None,size=size)]
        else:
            x = 2*np.random.randint(2,high=None,size=size)-1

        return x.astype(datatype).reshape(shape,order='C')

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    @staticmethod
    def gau(datatype=np.float64,shape=1,mean=None,dev=None,var=None):
        """
            Generates random field values according to a normal distribution.

            Parameters
            ----------
            datatype : type, *optional*
                Data type of the field values (default: np.float64).
            shape : {integer, tuple, list, ndarray}, *optional*
                Split up dimension of the space (default: 1).
            mean : {scalar, ndarray}, *optional*
                Mean of the normal distribution (default: 0).
            dev : {scalar, ndarray}, *optional*
                Standard deviation of the normal distribution (default: 1).
            var : {scalar, ndarray}, *optional*
                Variance of the normal distribution (outranks the standard
                deviation) (default: None).

            Returns
            -------
            x : ndarray
                Random field values (with correct dtype and shape).

            Raises
            ------
            ValueError
                If the array dimension of `mean`, `dev` or `var` mismatch with
                `shape`.

        """
        size = np.prod(shape,axis=0,dtype=np.int,out=None)

        if(datatype in [np.complex64,np.complex128]):
            x = np.empty(size,dtype=datatype,order='C')
            x.real = np.random.normal(loc=0,scale=np.sqrt(0.5),size=size)
            x.imag = np.random.normal(loc=0,scale=np.sqrt(0.5),size=size)
        else:
            x = np.random.normal(loc=0,scale=1,size=size)

        if(var is not None):
            if(np.size(var)==1):
                x *= np.sqrt(np.abs(var))
            elif(np.size(var)==size):
                x *= np.sqrt(np.absolute(var).flatten(order='C'))
            else:
                raise ValueError(about._errors.cstring("ERROR: dimension mismatch ( "+str(np.size(var))+" <> "+str(size)+" )."))
        elif(dev is not None):
            if(np.size(dev)==1):
                x *= np.abs(dev)
            elif(np.size(dev)==size):
                x *= np.absolute(dev).flatten(order='C')
            else:
                raise ValueError(about._errors.cstring("ERROR: dimension mismatch ( "+str(np.size(dev))+" <> "+str(size)+" )."))
        if(mean is not None):
            if(np.size(mean)==1):
                x += mean
            elif(np.size(mean)==size):
                x += np.array(mean).flatten(order='C')
            else:
                raise ValueError(about._errors.cstring("ERROR: dimension mismatch ( "+str(np.size(mean))+" <> "+str(size)+" )."))

        return x.astype(datatype).reshape(shape,order='C')

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    @staticmethod
    def uni(datatype=np.float64,shape=1,vmin=0,vmax=1):
        """
            Generates random field values according to an uniform distribution
            over [vmin,vmax[.

            Parameters
            ----------
            datatype : type, *optional*
                Data type of the field values (default: np.float64).
            shape : {integer, tuple, list, ndarray}, *optional*
                Split up dimension of the space (default: 1).

            vmin : {scalar, list, ndarray, field}, *optional*
                Lower limit of the uniform distribution (default: 0).
            vmax : {scalar, list, ndarray, field}, *optional*
                Upper limit of the uniform distribution (default: 1).

            Returns
            -------
            x : ndarray
                Random field values (with correct dtype and shape).

        """
        size = np.prod(shape,axis=0,dtype=np.int,out=None)
        if(np.size(vmin)>1):
            vmin = np.array(vmin).flatten(order='C')
        if(np.size(vmax)>1):
            vmax = np.array(vmax).flatten(order='C')

        if(datatype in [np.complex64,np.complex128]):
            x = np.empty(size,dtype=datatype,order='C')
            x.real = (vmax-vmin)*np.random.random(size=size)+vmin
            x.imag = (vmax-vmin)*np.random.random(size=size)+vmin
        elif(datatype in [np.int8,np.int16,np.int32,np.int64]):
            x = np.random.randint(min(vmin,vmax),high=max(vmin,vmax),size=size)
        else:
            x = (vmax-vmin)*np.random.random(size=size)+vmin

        return x.astype(datatype).reshape(shape,order='C')

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    def __repr__(self):
        return "<nifty.random>"

##-----------------------------------------------------------------------------





##=============================================================================

class space(object):
    """
        ..     _______   ______    ____ __   _______   _______
        ..   /  _____/ /   _   | /   _   / /   ____/ /   __  /
        ..  /_____  / /  /_/  / /  /_/  / /  /____  /  /____/
        .. /_______/ /   ____/  \______|  \______/  \______/  class
        ..          /__/

        NIFTY base class for spaces and their discretizations.

        The base NIFTY space class is an abstract class from which other
        specific space subclasses, including those preimplemented in NIFTY
        (e.g. the regular grid class) must be derived.

        Parameters
        ----------
        para : {single object, list of objects}, *optional*
            This is a freeform list of parameters that derivatives of the space
            class can use (default: 0).
        datatype : numpy.dtype, *optional*
            Data type of the field values for a field defined on this space
            (default: numpy.float64).

        See Also
        --------
        point_space :  A class for unstructured lists of numbers.
        rg_space : A class for regular cartesian grids in arbitrary dimensions.
        hp_space : A class for the HEALPix discretization of the sphere
            [#]_.
        gl_space : A class for the Gauss-Legendre discretization of the sphere
            [#]_.
        lm_space : A class for spherical harmonic components.
        nested_space : A class for product spaces.

        References
        ----------
        .. [#] K.M. Gorski et al., 2005, "HEALPix: A Framework for
               High-Resolution Discretization and Fast Analysis of Data
               Distributed on the Sphere", *ApJ* 622..759G.
Marco Selig's avatar
Marco Selig committed
943 944
        .. [#] M. Reinecke and D. Sverre Seljebotn, 2013, "Libsharp - spherical
               harmonic transforms revisited";
945
               `arXiv:1303.4945 <http://www.arxiv.org/abs/1303.4945>`_
Marco Selig's avatar
Marco Selig committed
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010

        Attributes
        ----------
        para : {single object, list of objects}
            This is a freeform list of parameters that derivatives of the space class can use.
        datatype : numpy.dtype
            Data type of the field values for a field defined on this space.
        discrete : bool
            Whether the space is inherently discrete (true) or a discretization
            of a continuous space (false).
        vol : numpy.ndarray
            An array of pixel volumes, only one component if the pixels all
            have the same volume.
    """
    def __init__(self,para=0,datatype=None):
        """
            Sets the attributes for a space class instance.

            Parameters
            ----------
            para : {single object, list of objects}, *optional*
                This is a freeform list of parameters that derivatives of the
                space class can use (default: 0).
            datatype : numpy.dtype, *optional*
                Data type of the field values for a field defined on this space
                (default: numpy.float64).

            Returns
            -------
            None
        """
        if(np.isscalar(para)):
            para = np.array([para],dtype=np.int)
        else:
            para = np.array(para,dtype=np.int)
        self.para = para

        ## check data type
        if(datatype is None):
            datatype = np.float64
        elif(datatype not in [np.int8,np.int16,np.int32,np.int64,np.float16,np.float32,np.float64,np.complex64,np.complex128]):
            about.warnings.cprint("WARNING: data type set to default.")
            datatype = np.float64
        self.datatype = datatype

        self.discrete = True
        self.vol = np.real(np.array([1],dtype=self.datatype))

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    def dim(self,split=False):
        """
            Computes the dimension of the space, i.e.\  the number of pixels.

            Parameters
            ----------
            split : bool, *optional*
                Whether to return the dimension split up, i.e. the numbers of
                pixels in each direction, or not (default: False).

            Returns
            -------
            dim : {int, numpy.ndarray}
                Dimension(s) of the space.
        """
1011
        raise NotImplementedError(about._errors.cstring("ERROR: no generic instance method 'dim'."))
Marco Selig's avatar
Marco Selig committed
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    def dof(self):
        """
            Computes the number of degrees of freedom of the space.

            Returns
            -------
            dof : int
                Number of degrees of freedom of the space.
        """
1024
        raise NotImplementedError(about._errors.cstring("ERROR: no generic instance method 'dof'."))
Marco Selig's avatar
Marco Selig committed
1025 1026 1027 1028 1029 1030 1031 1032 1033

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    def enforce_power(self,spec,**kwargs):
        """
            Provides a valid power spectrum array from a given object.

            Parameters
            ----------
Marco Selig's avatar
Marco Selig committed
1034
            spec : {scalar, list, numpy.ndarray, nifty.field, function}
Marco Selig's avatar
Marco Selig committed
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
                Fiducial power spectrum from which a valid power spectrum is to
                be calculated. Scalars are interpreted as constant power
                spectra.

            Returns
            -------
            spec : numpy.ndarray
                Valid power spectrum.

            Other parameters
            ----------------
            size : int, *optional*
                Number of bands the power spectrum shall have (default: None).
1048 1049
            kindex : numpy.ndarray, *optional*
                Scale of each band.
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
            codomain : nifty.space, *optional*
                A compatible codomain for power indexing (default: None).
            log : bool, *optional*
                Flag specifying if the spectral binning is performed on logarithmic
                scale or not; if set, the number of used bins is set
                automatically (if not given otherwise); by default no binning
                is done (default: None).
            nbin : integer, *optional*
                Number of used spectral bins; if given `log` is set to ``False``;
                integers below the minimum of 3 induce an automatic setting;
                by default no binning is done (default: None).
            binbounds : {list, array}, *optional*
                User specific inner boundaries of the bins, which are preferred
                over the above parameters; by default no binning is done
                (default: None).            vmin : {scalar, list, ndarray, field}, *optional*
                Lower limit of the uniform distribution if ``random == "uni"``
                (default: 0).
1067

Marco Selig's avatar
Marco Selig committed
1068
        """
1069
        raise NotImplementedError(about._errors.cstring("ERROR: no generic instance method 'enforce_power'."))
Marco Selig's avatar
Marco Selig committed
1070 1071 1072

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

1073
    def get_power_index(self,irreducible=False): ## TODO: remove in future version
Marco Selig's avatar
Marco Selig committed
1074
        """
1075
            **DEPRECATED** Provides the indexing array of the power spectrum.
Marco Selig's avatar
Marco Selig committed
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105

            Provides either an array giving for each component of a field the
            corresponding index of a power spectrum (if ``irreducible==False``)
            or two arrays containing the scales of the modes and the numbers of
            modes with this scale (if ``irreducible==True``).

            Parameters
            ----------
            irreducible : bool, *optional*
                Whether to return two arrays containing the scales and
                corresponding number of represented modes (if True) or the
                indexing array (if False) (default: False).

            Returns
            -------
            kindex : numpy.ndarray
                Scale of each band, returned only if ``irreducible==True``.
            rho : numpy.ndarray
                Number of modes per scale represented in the discretization,
                returned only if ``irreducible==True``.
            pindex : numpy.ndarray
                Indexing array giving the power spectrum index for each
                represented mode, returned only if ``irreducible==False``.

            Notes
            -----
            The indexing array is of the same shape as a field living in this
            space and contains the indices of the associated bands.
            kindex and rho are each one-dimensional arrays.
        """
1106
        about.warnings.cprint("WARNING: 'get_power_index' is deprecated.")
1107
        raise NotImplementedError(about._errors.cstring("ERROR: no generic instance method 'get_power_index'."))
Marco Selig's avatar
Marco Selig committed
1108

1109
    def get_power_undex(self,pindex=None): ## TODO: remove in future version
1110
        """
Marco Selig's avatar
Marco Selig committed
1111
            **DEPRECATED** Provides the Unindexing array for an indexed power spectrum.
1112 1113 1114 1115 1116 1117 1118 1119 1120

            Parameters
            ----------
            pindex : numpy.ndarray, *optional*
                Indexing array giving the power spectrum index for each
                represented mode.

            Returns
            -------
Marco Selig's avatar
Marco Selig committed
1121 1122
            pundex : numpy.ndarray
                Unindexing array undoing power indexing.
1123 1124 1125

            Notes
            -----
Marco Selig's avatar
Marco Selig committed
1126 1127
            Indexing with the unindexing array undoes the indexing with the
            indexing array; i.e., ``power == power[pindex].flatten()[pundex]``.
1128 1129 1130 1131 1132 1133

            See also
            --------
            get_power_index

        """
1134
        about.warnings.cprint("WARNING: 'get_power_undex' is deprecated.")
1135 1136
        if(pindex is None):
            pindex = self.get_power_index(irreducible=False)
Marco Selig's avatar
Marco Selig committed
1137 1138
#        return list(np.unravel_index(np.unique(pindex,return_index=True,return_inverse=False)[1],pindex.shape,order='C')) ## < version 0.4
        return np.unique(pindex,return_index=True,return_inverse=False)[1]
1139

1140
    def set_power_indices(self,**kwargs):
Marco Selig's avatar
Marco Selig committed
1141
        """
1142 1143 1144 1145 1146 1147
            Sets the (un)indexing objects for spectral indexing internally.

            Parameters
            ----------
            log : bool
                Flag specifying if the binning is performed on logarithmic
1148 1149 1150
                scale or not; if set, the number of used bins is set
                automatically (if not given otherwise); by default no binning
                is done (default: None).
1151
            nbin : integer
1152 1153
                Number of used bins; if given `log` is set to ``False``;
                integers below the minimum of 3 induce an automatic setting;
1154 1155
                by default no binning is done (default: None).
            binbounds : {list, array}
1156 1157 1158
                User specific inner boundaries of the bins, which are preferred
                over the above parameters; by default no binning is done
                (default: None).
1159 1160 1161 1162 1163 1164 1165 1166

            Returns
            -------
            None

            See also
            --------
            get_power_indices
Marco Selig's avatar
Marco Selig committed
1167 1168

        """
1169
        raise NotImplementedError(about._errors.cstring("ERROR: no generic instance method 'set_power_indices'."))
1170

1171 1172 1173
    def get_power_indices(self,**kwargs):
        """
            Provides the (un)indexing objects for spectral indexing.
1174

1175 1176 1177
            Provides one-dimensional arrays containing the scales of the
            spectral bands and the numbers of modes per scale, and an array
            giving for each component of a field the corresponding index of a
Marco Selig's avatar
Marco Selig committed
1178
            power spectrum as well as an Unindexing array.
1179 1180 1181 1182 1183

            Parameters
            ----------
            log : bool
                Flag specifying if the binning is performed on logarithmic
1184 1185 1186
                scale or not; if set, the number of used bins is set
                automatically (if not given otherwise); by default no binning
                is done (default: None).
1187
            nbin : integer
1188 1189
                Number of used bins; if given `log` is set to ``False``;
                integers below the minimum of 3 induce an automatic setting;
1190 1191
                by default no binning is done (default: None).
            binbounds : {list, array}
1192 1193 1194
                User specific inner boundaries of the bins, which are preferred
                over the above parameters; by default no binning is done
                (default: None).
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204

            Returns
            -------
            kindex : numpy.ndarray
                Scale of each spectral band.
            rho : numpy.ndarray
                Number of modes per scale represented in the discretization.
            pindex : numpy.ndarray
                Indexing array giving the power spectrum index for each
                represented mode.
Marco Selig's avatar
Marco Selig committed
1205 1206
            pundex : numpy.ndarray
                Unindexing array undoing power spectrum indexing.
1207 1208 1209 1210 1211 1212

            Notes
            -----
            The ``kindex`` and ``rho`` are each one-dimensional arrays.
            The indexing array is of the same shape as a field living in this
            space and contains the indices of the associated bands.
Marco Selig's avatar
Marco Selig committed
1213 1214
            Indexing with the unindexing array undoes the indexing with the
            indexing array; i.e., ``power == power[pindex].flatten()[pundex]``.
1215 1216 1217 1218 1219 1220 1221 1222

            See also
            --------
            set_power_indices

        """
        self.set_power_indices(**kwargs)
        return self.power_indices.get("kindex"),self.power_indices.get("rho"),self.power_indices.get("pindex"),self.power_indices.get("pundex")
1223

Marco Selig's avatar
Marco Selig committed
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    def enforce_shape(self,x):
        """
            Shapes an array of valid field values correctly, according to the
            specifications of the space instance.

            Parameters
            ----------
            x : numpy.ndarray
                Array containing the field values to be put into shape.

            Returns
            -------
            y : numpy.ndarray
                Correctly shaped array.
        """
        x = np.array(x)

        if(np.size(x)!=self.dim(split=False)):
            raise ValueError(about._errors.cstring("ERROR: dimension mismatch ( "+str(np.size(x))+" <> "+str(self.dim(split=False))+" )."))
#        elif(not np.all(np.array(np.shape(x))==self.dim(split=True))):
#            about.warnings.cprint("WARNING: reshaping forced.")

        return x.reshape(self.dim(split=True),order='C')

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    def enforce_values(self,x,extend=True):
        """
            Computes valid field values from a given object, according to the
            constraints from the space instance.

            Parameters
            ----------
            x : {float, numpy.ndarray, nifty.field}
                Object to be transformed into an array of valid field values.

            Returns
            -------
            x : numpy.ndarray
                Array containing the valid field values.

            Other parameters
            ----------------
            extend : bool, *optional*
                Whether a scalar is extented to a constant array or not
                (default: True).
        """
        if(isinstance(x,field)):
            if(self==x.domain):
                if(self.datatype is not x.domain.datatype):
                    raise TypeError(about._errors.cstring("ERROR: inequal data types ( '"+str(np.result_type(self.datatype))+"' <> '"+str(np.result_type(x.domain.datatype))+"' )."))
                else:
                    x = x.val
            else:
                raise ValueError(about._errors.cstring("ERROR: inequal domains."))
        else:
            if(np.size(x)==1):
                if(extend):
                    x = self.datatype(x)*np.ones(self.dim(split=True),dtype=self.datatype,order='C')
                else:
                    if(np.isscalar(x)):
                        x = np.array([x],dtype=self.datatype)
                    else:
                        x = np.array(x,dtype=self.datatype)
            else:
                x = self.enforce_shape(np.array(x,dtype=self.datatype))

        ## check finiteness
        if(not np.all(np.isfinite(x))):
            about.warnings.cprint("WARNING: infinite value(s).")

        return x

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    def get_random_values(self,**kwargs):
        """
            Generates random field values according to the specifications given
            by the parameters.

            Returns
            -------
            x : numpy.ndarray
                Valid field values.

            Other parameters
            ----------------
            random : string, *optional*
                Specifies the probability distribution from which the random
                numbers are to be drawn.
                Supported distributions are:

                - "pm1" (uniform distribution over {+1,-1} or {+1,+i,-1,-i}
                - "gau" (normal distribution with zero-mean and a given standard
                    deviation or variance)
                - "syn" (synthesizes from a given power spectrum)
                - "uni" (uniform distribution over [vmin,vmax[)

                (default: None).
            dev : float, *optional*
                Standard deviation (default: 1).
            var : float, *optional*
                Variance, overriding `dev` if both are specified
                (default: 1).
Marco Selig's avatar
Marco Selig committed
1330
            spec : {scalar, list, numpy.ndarray, nifty.field, function}, *optional*
Marco Selig's avatar
Marco Selig committed
1331
                Power spectrum (default: 1).
1332 1333 1334 1335 1336
            pindex : numpy.ndarray, *optional*
                Indexing array giving the power spectrum index of each band
                (default: None).
            kindex : numpy.ndarray, *optional*
                Scale of each band (default: None).
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
            codomain : nifty.space, *optional*
                A compatible codomain with power indices (default: None).
            log : bool, *optional*
                Flag specifying if the spectral binning is performed on logarithmic
                scale or not; if set, the number of used bins is set
                automatically (if not given otherwise); by default no binning
                is done (default: None).
            nbin : integer, *optional*
                Number of used spectral bins; if given `log` is set to ``False``;
                integers below the minimum of 3 induce an automatic setting;
                by default no binning is done (default: None).
            binbounds : {list, array}, *optional*
                User specific inner boundaries of the bins, which are preferred
                over the above parameters; by default no binning is done
                (default: None).            vmin : {scalar, list, ndarray, field}, *optional*
                Lower limit of the uniform distribution if ``random == "uni"``
                (default: 0).
Marco Selig's avatar
Marco Selig committed
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
            vmin : float, *optional*
                Lower limit for a uniform distribution (default: 0).
            vmax : float, *optional*
                Upper limit for a uniform distribution (default: 1).
        """
        arg = random.arguments(self,**kwargs)

        if(arg is None):
            x = np.zeros(self.dim(split=True),dtype=self.datatype,order='C')

        elif(arg[0]=="pm1"):
            x = random.pm1(datatype=self.datatype,shape=self.dim(split=True))

        elif(arg[0]=="gau"):
            x = random.gau(datatype=self.datatype,shape=self.dim(split=True),mean=None,dev=arg[2],var=arg[3])

        elif(arg[0]=="uni"):
            x = random.uni(datatype=self.datatype,shape=self.dim(split=True),vmin=arg[1],vmax=arg[2])

        else:
            raise KeyError(about._errors.cstring("ERROR: unsupported random key '"+str(arg[0])+"'."))

        return x

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    def check_codomain(self,codomain):
        """
            Checks whether a given codomain is compatible to the space or not.

            Parameters
            ----------
            codomain : nifty.space
                Space to be checked for compatibility.

            Returns
            -------
            check : bool
                Whether or not the given codomain is compatible to the space.
        """
        if(not isinstance(codomain,space)):
            raise TypeError(about._errors.cstring("ERROR: invalid input."))

        if(self==codomain):
            return True

        return False

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    def get_codomain(self,**kwargs):
        """
            Generates a compatible codomain to which transformations are
            reasonable, usually either the position basis or the basis of
            harmonic eigenmodes.

            Parameters
            ----------
            coname : string, *optional*
                String specifying a desired codomain (default: None).
            cozerocenter : {bool, numpy.ndarray}, *optional*
                Whether or not the grid is zerocentered for each axis or not
                (default: None).
            conest : list, *optional*
                List of nested spaces of the codomain (default: None).
            coorder : list, *optional*
                Permutation of the list of nested spaces (default: None).

            Returns
            -------
            codomain : nifty.space
                A compatible codomain.
        """
1427
        raise NotImplementedError(about._errors.cstring("ERROR: no generic instance method 'get_codomain'."))
Marco Selig's avatar
Marco Selig committed
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    def get_meta_volume(self,total=False):
        """
            Calculates the meta volumes.

            The meta volumes are the volumes associated with each component of
            a field, taking into account field components that are not
            explicitly included in the array of field values but are determined
            by symmetry conditions.

            Parameters
            ----------
            total : bool, *optional*
                Whether to return the total meta volume of the space or the
                individual ones of each field component (default: False).

            Returns
            -------
            mol : {numpy.ndarray, float}
                Meta volume of the field components or the complete space.
        """
1451
        raise NotImplementedError(about._errors.cstring("ERROR: no generic instance method 'get_meta_volume'."))
Marco Selig's avatar
Marco Selig committed
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    def calc_weight(self,x,power=1):
        """
            Weights a given array of field values with the pixel volumes (not
            the meta volumes) to a given power.

            Parameters
            ----------
            x : numpy.ndarray
                Array to be weighted.
            power : float, *optional*
                Power of the pixel volumes to be used (default: 1).

            Returns
            -------
            y : numpy.ndarray
                Weighted array.
        """
        x = self.enforce_shape(np.array(x,dtype=self.datatype))
        ## weight
        return x*self.vol**power

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    def calc_dot(self,x,y):
        """
            Computes the discrete inner product of two given arrays of field
            values.

            Parameters
            ----------
            x : numpy.ndarray
                First array
            y : numpy.ndarray
                Second array

            Returns
            -------
            dot : float
                Inner product of the two arrays.
        """
        x = self.enforce_shape(np.array(x,dtype=self.datatype))
        y = self.enforce_shape(np.array(y,dtype=self.datatype))
        ## inner product
        return np.dot(np.conjugate(x),y,out=None)

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    def calc_transform(self,x,codomain=None,**kwargs):
        """
            Computes the transform of a given array of field values.

            Parameters
            ----------
            x : numpy.ndarray
                Array to be transformed.
            codomain : nifty.space, *optional*
                Target space to which the transformation shall map
                (default: self).

            Returns
            -------
            Tx : numpy.ndarray
                Transformed array

            Other parameters
            ----------------
            iter : int, *optional*
                Number of iterations performed in specific transformations.
        """
        x = self.enforce_shape(np.array(x,dtype=self.datatype))

        if(codomain is None):
            return x ## T == id

        ## check codomain
        self.check_codomain(codomain) ## a bit pointless

        if(self==codomain):
            return x ## T == id

        else:
            raise ValueError(about._errors.cstring("ERROR: unsupported transformation."))

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    def calc_smooth(self,x,sigma=0,**kwargs):
        """
            Smoothes an array of field values by convolution with a Gaussian
            kernel.

            Parameters
            ----------
            x : numpy.ndarray
                Array of field values to be smoothed.
            sigma : float, *optional*
                Standard deviation of the Gaussian kernel, specified in units
                of length in position space (default: 0).

            Returns
            -------
            Gx : numpy.ndarray
                Smoothed array.

            Other parameters
            ----------------
            iter : int, *optional*
                Number of iterations (default: 0).
        """
1563
        raise NotImplementedError(about._errors.cstring("ERROR: no generic instance method 'calc_smooth'."))
Marco Selig's avatar
Marco Selig committed
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    def calc_power(self,x,**kwargs):
        """
            Computes the power of an array of field values.

            Parameters
            ----------
            x : numpy.ndarray
                Array containing the field values of which the power is to be
                calculated.

            Returns
            -------
            spec : numpy.ndarray
                Power contained in the input array.

            Other parameters
            ----------------
            pindex : numpy.ndarray, *optional*
                Indexing array assigning the input array components to
                components of the power spectrum (default: None).
1587 1588 1589
            kindex : numpy.ndarray, *optional*
                Scale corresponding to each band in the power spectrum
                (default: None).
Marco Selig's avatar
Marco Selig committed
1590 1591
            rho : numpy.ndarray, *optional*
                Number of degrees of freedom per band (default: None).
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
            codomain : nifty.space, *optional*
                A compatible codomain for power indexing (default: None).
            log : bool, *optional*
                Flag specifying if the spectral binning is performed on logarithmic
                scale or not; if set, the number of used bins is set
                automatically (if not given otherwise); by default no binning
                is done (default: None).
            nbin : integer, *optional*
                Number of used spectral bins; if given `log` is set to ``False``;
                integers below the minimum of 3 induce an automatic setting;
                by default no binning is done (default: None).
            binbounds : {list, array}, *optional*
                User specific inner boundaries of the bins, which are preferred
                over the above parameters; by default no binning is done
                (default: None).            vmin : {scalar, list, ndarray, field}, *optional*
                Lower limit of the uniform distribution if ``random == "uni"``
                (default: 0).

Marco Selig's avatar
Marco Selig committed
1610
        """
1611
        raise NotImplementedError(about._errors.cstring("ERROR: no generic instance method 'calc_power'."))
Marco Selig's avatar
Marco Selig committed
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    def get_plot(self,x,**kwargs):
        """
            Creates a plot of field values according to the specifications
            given by the parameters.

            Parameters
            ----------
            x : numpy.ndarray
                Array containing the field values.

            Returns
            -------
            None

            Other parameters
            ----------------
            title : string, *optional*
                Title of the plot (default: "").
            vmin : float, *optional*
                Minimum value to be displayed (default: ``min(x)``).
            vmax : float, *optional*
                Maximum value to be displayed (default: ``max(x)``).
            power : bool, *optional*
                Whether to plot the power contained in the field or the field
                values themselves (default: False).
            unit : string, *optional*
                Unit of the field values (default: "").
            norm : string, *optional*
                Scaling of the field values before plotting (default: None).
            cmap : matplotlib.colors.LinearSegmentedColormap, *optional*
                Color map to be used for two-dimensional plots (default: None).
            cbar : bool, *optional*
                Whether to show the color bar or not (default: True).
            other : {single object, tuple of objects}, *optional*
                Object or tuple of objects to be added, where objects can be
                scalars, arrays, or fields (default: None).
            legend : bool, *optional*
                Whether to show the legend or not (default: False).
            mono : bool, *optional*
                Whether to plot the monopole or not (default: True).
1655 1656 1657
            save : string, *optional*
                Valid file name where the figure is to be stored, by default
                the figure is not saved (default: False).
Marco Selig's avatar
Marco Selig committed
1658 1659 1660 1661 1662 1663
            error : {float, numpy.ndarray, nifty.field}, *optional*
                Object indicating some confidence interval to be plotted
                (default: None).
            kindex : numpy.ndarray, *optional*
                Scale corresponding to each band in the power spectrum
                (default: None).
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
            codomain : nifty.space, *optional*
                A compatible codomain for power indexing (default: None).
            log : bool, *optional*
                Flag specifying if the spectral binning is performed on logarithmic
                scale or not; if set, the number of used bins is set
                automatically (if not given otherwise); by default no binning
                is done (default: None).
            nbin : integer, *optional*
                Number of used spectral bins; if given `log` is set to ``False``;
                integers below the minimum of 3 induce an automatic setting;
                by default no binning is done (default: None).
            binbounds : {list, array}, *optional*
                User specific inner boundaries of the bins, which are preferred
                over the above parameters; by default no binning is done
                (default: None).            vmin : {scalar, list, ndarray, field}, *optional*
                Lower limit of the uniform distribution if ``random == "uni"``
                (default: 0).
Marco Selig's avatar
Marco Selig committed
1681 1682
            iter : int, *optional*
                Number of iterations (default: 0).
1683

Marco Selig's avatar
Marco Selig committed
1684
        """
1685
        raise NotImplementedError(about._errors.cstring("ERROR: no generic instance method 'get_plot'."))
Marco Selig's avatar
Marco Selig committed
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    def __repr__(self):
        return "<nifty.space>"

    def __str__(self):
        return "nifty.space instance\n- para     = "+str(self.para)+"\n- datatype = numpy."+str(np.result_type(self.datatype))

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    def __len__(self):
        return int(self.dim(split=False))

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    def _meta_vars(self): ## > captures all nonstandard properties
1703
        mars = np.array([ii[1] for ii in vars(self).iteritems() if ii[0] not in ["para","datatype","discrete","vol","power_indices"]],dtype=np.object)
Marco Selig's avatar
Marco Selig committed
1704 1705 1706 1707 1708 1709 1710
        if(np.size(mars)==0):
            return None
        else:
            return mars

    def __eq__(self,x): ## __eq__ : self == x
        if(isinstance(x,space)):
1711
            if(isinstance(x,type(self)))and(np.all(self.para==x.para))and(self.discrete==x.discrete)and(np.all(self.vol==x.vol))and(np.all(self._meta_vars()==x._meta_vars())): ## data types are ignored
Marco Selig's avatar
Marco Selig committed
1712 1713 1714 1715 1716
                return True
        return False

    def __ne__(self,x): ## __ne__ : self <> x
        if(isinstance(x,space)):
1717
            if(not isinstance(x,type(self)))or(np.any(self.para!=x.para))or(self.discrete!=x.discrete)or(np.any(self.vol!=x.vol))or(np.any(self._meta_vars()!=x._meta_vars())): ## data types are ignored
Marco Selig's avatar
Marco Selig committed
1718 1719 1720 1721 1722
                return True
        return False

    def __lt__(self,x): ## __lt__ : self < x
        if(isinstance(x,space)):
1723
            if(not isinstance(x,type(self)))or(np.size(self.para)!=np.size(x.para))or(np.size(self.vol)!=np.size(x.vol)):
Marco Selig's avatar
Marco Selig committed
1724
                raise ValueError(about._errors.cstring("ERROR: incomparable spaces."))
1725
            elif(self.discrete==x.discrete): ## data types are ignored
1726
                for ii in xrange(np.size(self.para)):
Marco Selig's avatar
Marco Selig committed
1727 1728 1729 1730
                    if(self.para[ii]<x.para[ii]):
                        return True
                    elif(self.para[ii]>x.para[ii]):
                        return False
1731
                for ii in xrange(np.size(self.vol)):
1732 1733 1734 1735
                    if(self.vol[ii]<x.vol[ii]):
                        return True
                    elif(self.vol[ii]>x.vol[ii]):
                        return False
Marco Selig's avatar
Marco Selig committed
1736 1737
                s_mars = self._meta_vars()
                x_mars = x._meta_vars()
1738
                for ii in xrange(np.size(s_mars)):
Marco Selig's avatar
Marco Selig committed
1739 1740 1741 1742 1743 1744 1745 1746
                    if(np.all(s_mars[ii]<x_mars[ii])):
                        return True
                    elif(np.any(s_mars[ii]>x_mars[ii])):
                        break
        return False

    def __le__(self,x): ## __le__ : self <= x
        if(isinstance(x,space)):
1747
            if(not isinstance(x,type(self)))or(np.size(self.para)!=np.size(x.para))or(np.size(self.vol)!=np.size(x.vol)):
Marco Selig's avatar
Marco Selig committed
1748 1749
                raise ValueError(about._errors.cstring("ERROR: incomparable spaces."))
            elif(self.discrete==x.discrete): ## data types are ignored
1750
                for ii in xrange(np.size(self.para)):
Marco Selig's avatar
Marco Selig committed
1751 1752 1753 1754
                    if(self.para[ii]<x.para[ii]):
                        return True
                    if(self.para[ii]>x.para[ii]):
                        return False
1755
                for ii in xrange(np.size(self.vol)):
1756 1757 1758 1759
                    if(self.vol[ii]<x.vol[ii]):
                        return True
                    if(self.vol[ii]>x.vol[ii]):
                        return False
Marco Selig's avatar
Marco Selig committed
1760 1761
                s_mars = self._meta_vars()
                x_mars = x._meta_vars()
1762
                for ii in xrange(np.size(s_mars)):
Marco Selig's avatar
Marco Selig committed
1763 1764 1765 1766 1767 1768 1769 1770 1771
                    if(np.all(s_mars[ii]<x_mars[ii])):
                        return True
                    elif(np.any(s_mars[ii]>x_mars[ii])):
                        return False
                return True
        return False

    def __gt__(self,x): ## __gt__ : self > x
        if(isinstance(x,space)):
1772
            if(not isinstance(x,type(self)))or(np.size(self.para)!=np.size(x.para))or(np.size(self.vol)!=np.size(x.vol)):
Marco Selig's avatar
Marco Selig committed
1773 1774
                raise ValueError(about._errors.cstring("ERROR: incomparable spaces."))
            elif(self.discrete==x.discrete): ## data types are ignored
1775
                for ii in xrange(np.size(self.para)):
Marco Selig's avatar
Marco Selig committed
1776 1777 1778 1779
                    if(self.para[ii]>x.para[ii]):
                        return True
                    elif(self.para[ii]<x.para[ii]):
                        break
1780
                for ii in xrange(np.size(self.vol)):
1781 1782 1783 1784
                    if(self.vol[ii]>x.vol[ii]):
                        return True
                    elif(self.vol[ii]<x.vol[ii]):
                        break
Marco Selig's avatar
Marco Selig committed
1785 1786
                s_mars = self._meta_vars()
                x_mars = x._meta_vars()
1787
                for ii in xrange(np.size(s_mars)):
Marco Selig's avatar
Marco Selig committed
1788 1789 1790 1791 1792 1793 1794 1795
                    if(np.all(s_mars[ii]>x_mars[ii])):
                        return True
                    elif(np.any(s_mars[ii]<x_mars[ii])):
                        break
        return False

    def __ge__(self,x): ## __ge__ : self >= x
        if(isinstance(x,space)):
1796
            if(not isinstance(x,type(self)))or(np.size(self.para)!=np.size(x.para))or(np.size(self.vol)!=np.size(x.vol)):
Marco Selig's avatar
Marco Selig committed
1797 1798
                raise ValueError(about._errors.cstring("ERROR: incomparable spaces."))
            elif(self.discrete==x.discrete): ## data types are ignored
1799
                for ii in xrange(np.size(self.para)):
Marco Selig's avatar
Marco Selig committed
1800 1801 1802 1803
                    if(self.para[ii]>x.para[ii]):
                        return True
                    if(self.para[ii]<x.para[ii]):
                        return False
1804
                for ii in xrange(np.size(self.vol)):
1805 1806 1807 1808
                    if(self.vol[ii]>x.vol[ii]):
                        return True
                    if(self.vol[ii]<x.vol[ii]):
                        return False
Marco Selig's avatar
Marco Selig committed
1809 1810
                s_mars = self._meta_vars()
                x_mars = x._meta_vars()
1811
                for ii in xrange(np.size(s_mars)):
Marco Selig's avatar
Marco Selig committed
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
                    if(np.all(s_mars[ii]>x_mars[ii])):
                        return True
                    elif(np.any(s_mars[ii]<x_mars[ii])):
                        return False
                return True
        return False

##=============================================================================



##-----------------------------------------------------------------------------

class point_space(space):
    """
        ..                            __             __
        ..                          /__/           /  /_
        ..      ______    ______    __   __ ___   /   _/
        ..    /   _   | /   _   | /  / /   _   | /  /
        ..   /  /_/  / /  /_/  / /  / /  / /  / /  /_
        ..  /   ____/  \______/ /__/ /__/ /__/  \___/  space class
        .. /__/