rg_space.py 6.8 KB
Newer Older
1
2
3
4
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
5
#
6
7
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
8
9
10
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
11
# You should have received a copy of the GNU General Public License
12
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
#
14
# Copyright(C) 2013-2019 Max-Planck-Society
Theo Steininger's avatar
Theo Steininger committed
15
#
16
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
Philipp Arras's avatar
Philipp Arras committed
17

Marco Selig's avatar
Marco Selig committed
18
import numpy as np
Philipp Arras's avatar
Philipp Arras committed
19

Martin Reinecke's avatar
Martin Reinecke committed
20
from .. import dobj
Philipp Arras's avatar
Philipp Arras committed
21
22
23
from ..compat import *
from ..field import Field
from .structured_domain import StructuredDomain
csongor's avatar
csongor committed
24

Marco Selig's avatar
Marco Selig committed
25

Martin Reinecke's avatar
Martin Reinecke committed
26
27
class RGSpace(StructuredDomain):
    """NIFTy subclass for regular Cartesian grids.
Martin Reinecke's avatar
Martin Reinecke committed
28
29
30

    Parameters
    ----------
Martin Reinecke's avatar
Martin Reinecke committed
31
    shape : int or tuple of int
Martin Reinecke's avatar
Martin Reinecke committed
32
        Number of grid points or numbers of gridpoints along each axis.
Martin Reinecke's avatar
Martin Reinecke committed
33
    distances : None or float or tuple of float, optional
Martin Reinecke's avatar
Martin Reinecke committed
34
35
        Distance between two grid points along each axis
        (default: None).
Martin Reinecke's avatar
Martin Reinecke committed
36
37
38
39
40
41
42
43

        If distances is None:

          - if harmonic==True, all distances will be set to 1

          - if harmonic==False, the distance along each axis will be
            set to the inverse of the number of points along that axis.

Martin Reinecke's avatar
Martin Reinecke committed
44
    harmonic : bool, optional
45
        Whether the space represents a grid in position or harmonic space.
Martin Reinecke's avatar
Martin Reinecke committed
46
        (default: False).
Marco Selig's avatar
Marco Selig committed
47
    """
Martin Reinecke's avatar
Martin Reinecke committed
48
    _needed_for_hash = ["_distances", "_shape", "_harmonic"]
49

Martin Reinecke's avatar
Martin Reinecke committed
50
    def __init__(self, shape, distances=None, harmonic=False):
Martin Reinecke's avatar
Martin Reinecke committed
51
        self._harmonic = bool(harmonic)
Martin Reinecke's avatar
Martin Reinecke committed
52
53
54
        if np.isscalar(shape):
            shape = (shape,)
        self._shape = tuple(int(i) for i in shape)
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
55
56
57
58
59
60
61
62
63
64
65
66
67

        if distances is None:
            if self.harmonic:
                self._distances = (1.,) * len(self._shape)
            else:
                self._distances = tuple(1./s for s in self._shape)
        elif np.isscalar(distances):
            self._distances = (float(distances),) * len(self._shape)
        else:
            temp = np.empty(len(self.shape), dtype=np.float64)
            temp[:] = distances
            self._distances = tuple(temp)

68
        self._dvol = float(reduce(lambda x, y: x*y, self._distances))
Martin Reinecke's avatar
Martin Reinecke committed
69
        self._size = int(reduce(lambda x, y: x*y, self._shape))
Marco Selig's avatar
Marco Selig committed
70

71
    def __repr__(self):
Martin Reinecke's avatar
Martin Reinecke committed
72
73
        return ("RGSpace(shape={}, distances={}, harmonic={})"
                .format(self.shape, self.distances, self.harmonic))
74

75
76
77
78
79
80
81
82
83
    @property
    def harmonic(self):
        return self._harmonic

    @property
    def shape(self):
        return self._shape

    @property
Martin Reinecke's avatar
Martin Reinecke committed
84
85
    def size(self):
        return self._size
86

Martin Reinecke's avatar
Martin Reinecke committed
87
    @property
88
89
    def scalar_dvol(self):
        return self._dvol
90

91
    def get_k_length_array(self):
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
92
93
        if (not self.harmonic):
            raise NotImplementedError
94
95
        ibegin = dobj.ibegin_from_shape(self._shape)
        res = np.arange(self.local_shape[0], dtype=np.float64) + ibegin[0]
Martin Reinecke's avatar
Martin Reinecke committed
96
97
        res = np.minimum(res, self.shape[0]-res)*self.distances[0]
        if len(self.shape) == 1:
98
            return Field.from_local_data(self, res)
Martin Reinecke's avatar
Martin Reinecke committed
99
100
        res *= res
        for i in range(1, len(self.shape)):
101
            tmp = np.arange(self.local_shape[i], dtype=np.float64) + ibegin[i]
Martin Reinecke's avatar
Martin Reinecke committed
102
103
104
            tmp = np.minimum(tmp, self.shape[i]-tmp)*self.distances[i]
            tmp *= tmp
            res = np.add.outer(res, tmp)
105
        return Field.from_local_data(self, np.sqrt(res))
theos's avatar
theos committed
106

107
    def get_unique_k_lengths(self):
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
108
109
        if (not self.harmonic):
            raise NotImplementedError
Martin Reinecke's avatar
Martin Reinecke committed
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
        dimensions = len(self.shape)
        if dimensions == 1:  # extra easy
            maxdist = self.shape[0]//2
            return np.arange(maxdist+1, dtype=np.float64) * self.distances[0]
        if np.all(self.distances == self.distances[0]):  # shortcut
            maxdist = np.asarray(self.shape)//2
            tmp = np.sum(maxdist*maxdist)
            tmp = np.zeros(tmp+1, dtype=np.bool)
            t2 = np.arange(maxdist[0]+1, dtype=np.int64)
            t2 *= t2
            for i in range(1, dimensions):
                t3 = np.arange(maxdist[i]+1, dtype=np.int64)
                t3 *= t3
                t2 = np.add.outer(t2, t3)
            tmp[t2] = True
            return np.sqrt(np.nonzero(tmp)[0])*self.distances[0]
        else:  # do it the hard way
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
127
            # FIXME: this needs to improve for MPI. Maybe unique()/gather()?
Martin Reinecke's avatar
Martin Reinecke committed
128
            tmp = self.get_k_length_array().to_global_data()
Martin Reinecke's avatar
Martin Reinecke committed
129
            tmp = np.unique(tmp)
Martin Reinecke's avatar
Martin Reinecke committed
130
131
132
133
134
135
136
            tol = 1e-12*tmp[-1]
            # remove all points that are closer than tol to their right
            # neighbors.
            # I'm appending the last value*2 to the array to treat the
            # rightmost point correctly.
            return tmp[np.diff(np.r_[tmp, 2*tmp[-1]]) > tol]

Martin Reinecke's avatar
Martin Reinecke committed
137
138
    @staticmethod
    def _kernel(x, sigma):
139
        from ..sugar import exp
140
        return exp(x*x * (-2.*np.pi*np.pi*sigma*sigma))
Martin Reinecke's avatar
Martin Reinecke committed
141

142
    def get_fft_smoothing_kernel_function(self, sigma):
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
143
144
        if (not self.harmonic):
            raise NotImplementedError
Martin Reinecke's avatar
Martin Reinecke committed
145
        return lambda x: self._kernel(x, sigma)
theos's avatar
theos committed
146

Martin Reinecke's avatar
Martin Reinecke committed
147
    def get_default_codomain(self):
Martin Reinecke's avatar
Martin Reinecke committed
148
149
150
151
152
153
154
155
        """Returns a :class:`RGSpace` object representing the (position or
        harmonic) partner domain of `self`, depending on `self.harmonic`.

        Returns
        -------
        RGSpace
            The parter domain
        """
Martin Reinecke's avatar
Martin Reinecke committed
156
157
158
159
        distances = 1. / (np.array(self.shape)*np.array(self.distances))
        return RGSpace(self.shape, distances, not self.harmonic)

    def check_codomain(self, codomain):
Martin Reinecke's avatar
Martin Reinecke committed
160
161
162
        """Raises `TypeError` if `codomain` is not a matching partner domain
        for `self`.
        """
Martin Reinecke's avatar
Martin Reinecke committed
163
164
165
166
167
168
169
170
171
172
173
174
        if not isinstance(codomain, RGSpace):
            raise TypeError("domain is not a RGSpace")

        if self.shape != codomain.shape:
            raise AttributeError("The shapes of domain and codomain must be "
                                 "identical.")

        if self.harmonic == codomain.harmonic:
            raise AttributeError("domain.harmonic and codomain.harmonic must "
                                 "not be the same.")

        # Check if the distances match, i.e. dist' = 1 / (num * dist)
175
176
177
        if not np.all(abs(np.array(self.shape) *
                          np.array(self.distances) *
                          np.array(codomain.distances)-1) < 1e-7):
Martin Reinecke's avatar
Martin Reinecke committed
178
179
180
            raise AttributeError("The grid-distances of domain and codomain "
                                 "do not match.")

181
182
    @property
    def distances(self):
Martin Reinecke's avatar
Martin Reinecke committed
183
184
185
        """tuple of float : Distance between grid points along each axis.
        The n-th entry of the tuple is the distance between neighboring
        grid points along the n-th dimension.
186
        """
187
        return self._distances