utilities.py 7.74 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
14
15
16
17
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
Ultima's avatar
Ultima committed
18

Martin Reinecke's avatar
Martin Reinecke committed
19
from builtins import next, range
Ultima's avatar
Ultima committed
20
import numpy as np
21
from itertools import product
Martin Reinecke's avatar
Martin Reinecke committed
22
import abc
23

Martin Reinecke's avatar
Martin Reinecke committed
24

25
26
def get_slice_list(shape, axes):
    """
theos's avatar
theos committed
27
28
    Helper function which generates slice list(s) to traverse over all
    combinations of axes, other than the selected axes.
Jait Dixit's avatar
Jait Dixit committed
29
30
31
32

    Parameters
    ----------
    shape: tuple
theos's avatar
theos committed
33
        Shape of the data array to traverse over.
Jait Dixit's avatar
Jait Dixit committed
34
    axes: tuple
theos's avatar
theos committed
35
        Axes which should not be iterated over.
Jait Dixit's avatar
Jait Dixit committed
36
37
38
39
40
41
42
43
44
45
46

    Yields
    -------
    list
        The next list of indices and/or slice objects for each dimension.

    Raises
    ------
    ValueError
        If shape is empty.
        If axes(axis) does not match shape.
47
    """
Martin Reinecke's avatar
Martin Reinecke committed
48
    if shape is None:
49
        raise ValueError("shape cannot be None.")
50

51
52
    if axes:
        if not all(axis < len(shape) for axis in axes):
53
            raise ValueError("axes(axis) does not match shape.")
54
        axes_select = [0 if x in axes else 1 for x, y in enumerate(shape)]
Jait Dixit's avatar
Jait Dixit committed
55
        axes_iterables = \
Martin Reinecke's avatar
Martin Reinecke committed
56
            [list(range(y)) for x, y in enumerate(shape) if x not in axes]
57
58
59
60
61
        for index in product(*axes_iterables):
            it_iter = iter(index)
            slice_list = [
                next(it_iter)
                if axis else slice(None, None) for axis in axes_select
Jait Dixit's avatar
Jait Dixit committed
62
                ]
63
64
65
            yield slice_list
    else:
        yield [slice(None, None)]
Ultima's avatar
Ultima committed
66

Ultima's avatar
Ultima committed
67

Martin Reinecke's avatar
Martin Reinecke committed
68
69
def cast_iseq_to_tuple(seq):
    if seq is None:
70
        return None
Martin Reinecke's avatar
Martin Reinecke committed
71
72
73
    if np.isscalar(seq):
        return (int(seq),)
    return tuple(int(item) for item in seq)
Martin Reinecke's avatar
Martin Reinecke committed
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124


def memo(f):
    name = f.__name__

    def wrapped_f(self):
        if not hasattr(self, "_cache"):
            self._cache = {}
        try:
            return self._cache[name]
        except KeyError:
            self._cache[name] = f(self)
            return self._cache[name]
    return wrapped_f


class _DocStringInheritor(type):
    """
    A variation on
    http://groups.google.com/group/comp.lang.python/msg/26f7b4fcb4d66c95
    by Paul McGuire
    """
    def __new__(meta, name, bases, clsdict):
        if not('__doc__' in clsdict and clsdict['__doc__']):
            for mro_cls in (mro_cls for base in bases
                            for mro_cls in base.mro()):
                doc = mro_cls.__doc__
                if doc:
                    clsdict['__doc__'] = doc
                    break
        for attr, attribute in list(clsdict.items()):
            if not attribute.__doc__:
                for mro_cls in (mro_cls for base in bases
                                for mro_cls in base.mro()
                                if hasattr(mro_cls, attr)):
                    doc = getattr(getattr(mro_cls, attr), '__doc__')
                    if doc:
                        if isinstance(attribute, property):
                            clsdict[attr] = property(attribute.fget,
                                                     attribute.fset,
                                                     attribute.fdel,
                                                     doc)
                        else:
                            attribute.__doc__ = doc
                        break
        return super(_DocStringInheritor, meta).__new__(meta, name,
                                                        bases, clsdict)


class NiftyMeta(_DocStringInheritor, abc.ABCMeta):
    pass
Martin Reinecke's avatar
Martin Reinecke committed
125
126
127
128
129
130
131


def hartley(a, axes=None):
    # Check if the axes provided are valid given the shape
    if axes is not None and \
            not all(axis < len(a.shape) for axis in axes):
        raise ValueError("Provided axes do not match array shape")
132
    if np.issubdtype(a.dtype, np.complexfloating):
Martin Reinecke's avatar
Martin Reinecke committed
133
        raise TypeError("Hartley transform requires real-valued arrays.")
Martin Reinecke's avatar
Martin Reinecke committed
134
135
136
137

    from pyfftw.interfaces.numpy_fft import rfftn
    tmp = rfftn(a, axes=axes)

Martin Reinecke's avatar
Martin Reinecke committed
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
    def _fill_array(tmp, res, axes):
        if axes is None:
            axes = tuple(range(tmp.ndim))
        lastaxis = axes[-1]
        ntmplast = tmp.shape[lastaxis]
        slice1 = [slice(None)]*lastaxis + [slice(0, ntmplast)]
        np.add(tmp.real, tmp.imag, out=res[slice1])

        def _fill_upper_half(tmp, res, axes):
            lastaxis = axes[-1]
            nlast = res.shape[lastaxis]
            ntmplast = tmp.shape[lastaxis]
            nrem = nlast - ntmplast
            slice1 = [slice(None)]*lastaxis + [slice(ntmplast, None)]
            slice2 = [slice(None)]*lastaxis + [slice(nrem, 0, -1)]
            for i in axes[:-1]:
                slice1[i] = slice(1, None)
                slice2[i] = slice(None, 0, -1)
            np.subtract(tmp[slice2].real, tmp[slice2].imag, out=res[slice1])
            for i, ax in enumerate(axes[:-1]):
                dim1 = [slice(None)]*ax + [slice(0, 1)]
                axes2 = axes[:i] + axes[i+1:]
                _fill_upper_half(tmp[dim1], res[dim1], axes2)

        _fill_upper_half(tmp, res, axes)
        return res
Martin Reinecke's avatar
Martin Reinecke committed
164

Martin Reinecke's avatar
Martin Reinecke committed
165
    return _fill_array(tmp, np.empty_like(a), axes)
Martin Reinecke's avatar
Martin Reinecke committed
166
167
168
169
170
171
172
173


# Do a real-to-complex forward FFT and return the _full_ output array
def my_fftn_r2c(a, axes=None):
    # Check if the axes provided are valid given the shape
    if axes is not None and \
            not all(axis < len(a.shape) for axis in axes):
        raise ValueError("Provided axes do not match array shape")
174
    if np.issubdtype(a.dtype, np.complexfloating):
Martin Reinecke's avatar
Martin Reinecke committed
175
176
177
178
        raise TypeError("Transform requires real-valued input arrays.")

    from pyfftw.interfaces.numpy_fft import rfftn
    tmp = rfftn(a, axes=axes)
Martin Reinecke's avatar
Martin Reinecke committed
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

    def _fill_complex_array(tmp, res, axes):
        if axes is None:
            axes = tuple(range(tmp.ndim))
        lastaxis = axes[-1]
        ntmplast = tmp.shape[lastaxis]
        slice1 = [slice(None)]*lastaxis + [slice(0, ntmplast)]
        res[slice1] = tmp

        def _fill_upper_half_complex(tmp, res, axes):
            lastaxis = axes[-1]
            nlast = res.shape[lastaxis]
            ntmplast = tmp.shape[lastaxis]
            nrem = nlast - ntmplast
            slice1 = [slice(None)]*lastaxis + [slice(ntmplast, None)]
            slice2 = [slice(None)]*lastaxis + [slice(nrem, 0, -1)]
            for i in axes[:-1]:
                slice1[i] = slice(1, None)
                slice2[i] = slice(None, 0, -1)
            # np.conjugate(tmp[slice2], out=res[slice1])
            res[slice1] = np.conjugate(tmp[slice2])
            for i, ax in enumerate(axes[:-1]):
                dim1 = [slice(None)]*ax + [slice(0, 1)]
                axes2 = axes[:i] + axes[i+1:]
                _fill_upper_half_complex(tmp[dim1], res[dim1], axes2)

        _fill_upper_half_complex(tmp, res, axes)
        return res

    return _fill_complex_array(tmp, np.empty_like(a, dtype=tmp.dtype), axes)
Martin Reinecke's avatar
Martin Reinecke committed
209
210


Martin Reinecke's avatar
Martin Reinecke committed
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
def general_axpy(a, x, y, out):
    if x.domain != y.domain or x.domain != out.domain:
        raise ValueError("Incompatible domains")

    if out is x:
        if a != 1.:
            out *= a
        out += y
    elif out is y:
        if a != 1.:
            out += a*x
        else:
            out += x
    else:
        out.copy_content_from(y)
        if a != 1.:
            out += a*x
        else:
            out += x
    return out