distributors.py 7.14 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
14
# Copyright(C) 2013-2019 Max-Planck-Society
15
#
16
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
17

Martin Reinecke's avatar
Martin Reinecke committed
18
import numpy as np
19

Martin Reinecke's avatar
Martin Reinecke committed
20
from .. import dobj
21
from ..domain_tuple import DomainTuple
Martin Reinecke's avatar
Martin Reinecke committed
22
from ..domains.dof_space import DOFSpace
Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
23
from ..domains.power_space import PowerSpace
24
from ..field import Field
Martin Reinecke's avatar
Martin Reinecke committed
25
from ..utilities import infer_space, special_add_at
26
from .linear_operator import LinearOperator
Martin Reinecke's avatar
Martin Reinecke committed
27
28


Martin Reinecke's avatar
Martin Reinecke committed
29
class DOFDistributor(LinearOperator):
Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
30
31
32
33
34
35
    """Operator which distributes actual degrees of freedom (dof) according to
    some distribution scheme into a higher dimensional space. This distribution
    scheme is defined by the dofdex, a degree of freedom index, which
    associates the entries within the operators domain to locations in its
    target. This operator's domain is a DOFSpace, which is defined according to
    the distribution scheme.
36
37
38
39

    Parameters
    ----------
    dofdex: Field of integers
Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
40
        An integer Field on exactly one Space establishing the association
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
41
        between the locations in the operator's target and the underlying
Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
42
        degrees of freedom in its domain.
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
43
        It has to start at 0 and it increases monotonically, no empty bins are
Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
44
        allowed.
45
    target: Domain, tuple of Domain, or DomainTuple, optional
Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
46
47
        The target of the operator. If not specified, the domain of the dofdex
        is used.
48
49
50
51
    space: int, optional:
       The index of the sub-domain on which the operator acts.
       Can be omitted if `target` only has one sub-domain.
    """
Martin Reinecke's avatar
Martin Reinecke committed
52

Martin Reinecke's avatar
Martin Reinecke committed
53
54
55
56
57
58
    def __init__(self, dofdex, target=None, space=None):
        if target is None:
            target = dofdex.domain
        self._target = DomainTuple.make(target)
        space = infer_space(self._target, space)
        partner = self._target[space]
Martin Reinecke's avatar
Martin Reinecke committed
59
60
        if not isinstance(dofdex, Field):
            raise TypeError("dofdex must be a Field")
Martin Reinecke's avatar
Martin Reinecke committed
61
        if not len(dofdex.domain) == 1:
Philipp Arras's avatar
Philipp Arras committed
62
            raise ValueError("dofdex must be defined on exactly one Space")
Martin Reinecke's avatar
Martin Reinecke committed
63
        if not np.issubdtype(dofdex.dtype, np.integer):
Martin Reinecke's avatar
Martin Reinecke committed
64
            raise TypeError("dofdex must contain integer numbers")
Martin Reinecke's avatar
Martin Reinecke committed
65
        if partner != dofdex.domain[0]:
Martin Reinecke's avatar
Martin Reinecke committed
66
67
            raise ValueError("incorrect dofdex domain")

Martin Reinecke's avatar
fixes  
Martin Reinecke committed
68
        ldat = dofdex.local_data
Martin Reinecke's avatar
Martin Reinecke committed
69
        if ldat.size == 0:  # can happen for weird configurations
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
70
71
72
73
            nbin = 0
        else:
            nbin = ldat.max()
        nbin = dobj.np_allreduce_max(np.array(nbin))[()] + 1
Martin Reinecke's avatar
Martin Reinecke committed
74
        if partner.scalar_dvol is not None:
Martin Reinecke's avatar
Martin Reinecke committed
75
            wgt = np.bincount(dofdex.local_data.ravel(), minlength=nbin)
Martin Reinecke's avatar
Martin Reinecke committed
76
            wgt = wgt*partner.scalar_dvol
Martin Reinecke's avatar
Martin Reinecke committed
77
        else:
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
78
            dvol = Field.from_global_data(partner, partner.dvol).local_data
Martin Reinecke's avatar
Martin Reinecke committed
79
            wgt = np.bincount(dofdex.local_data.ravel(),
Martin Reinecke's avatar
Martin Reinecke committed
80
81
82
83
84
85
86
87
88
                              minlength=nbin, weights=dvol)
        # The explicit conversion to float64 is necessary because bincount
        # sometimes returns its result as an integer array, even when
        # floating-point weights are present ...
        wgt = wgt.astype(np.float64, copy=False)
        wgt = dobj.np_allreduce_sum(wgt)
        if (wgt == 0).any():
            raise ValueError("empty bins detected")

Martin Reinecke's avatar
Martin Reinecke committed
89
90
91
        self._init2(dofdex.val, space, DOFSpace(wgt))

    def _init2(self, dofdex, space, other_space):
Martin Reinecke's avatar
Martin Reinecke committed
92
        self._space = space
Martin Reinecke's avatar
Martin Reinecke committed
93
94
95
        dom = list(self._target)
        dom[self._space] = other_space
        self._domain = DomainTuple.make(dom)
Martin Reinecke's avatar
Martin Reinecke committed
96
        self._capability = self.TIMES | self.ADJOINT_TIMES
Martin Reinecke's avatar
Martin Reinecke committed
97

Martin Reinecke's avatar
Martin Reinecke committed
98
99
        if dobj.default_distaxis() in self._domain.axes[self._space]:
            dofdex = dobj.local_data(dofdex)
Martin Reinecke's avatar
Martin Reinecke committed
100
        else:  # dofdex must be available fully on every task
Martin Reinecke's avatar
Martin Reinecke committed
101
            dofdex = dobj.to_global_data(dofdex)
Martin Reinecke's avatar
Martin Reinecke committed
102
        self._dofdex = dofdex.ravel()
Martin Reinecke's avatar
Martin Reinecke committed
103
104
105
        firstaxis = self._target.axes[self._space][0]
        lastaxis = self._target.axes[self._space][-1]
        arrshape = dobj.local_shape(self._target.shape, 0)
Martin Reinecke's avatar
Martin Reinecke committed
106
107
        presize = np.prod(arrshape[0:firstaxis], dtype=np.int)
        postsize = np.prod(arrshape[lastaxis+1:], dtype=np.int)
Martin Reinecke's avatar
Martin Reinecke committed
108
        self._hshape = (presize, self._domain[self._space].shape[0], postsize)
Martin Reinecke's avatar
Martin Reinecke committed
109
110
        self._pshape = (presize, self._dofdex.size, postsize)

Martin Reinecke's avatar
Martin Reinecke committed
111
    def _adjoint_times(self, x):
Martin Reinecke's avatar
Martin Reinecke committed
112
        arr = x.local_data
Martin Reinecke's avatar
Martin Reinecke committed
113
114
        arr = arr.reshape(self._pshape)
        oarr = np.zeros(self._hshape, dtype=x.dtype)
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
115
        oarr = special_add_at(oarr, 1, self._dofdex, arr)
Martin Reinecke's avatar
Martin Reinecke committed
116
        if dobj.distaxis(x.val) in x.domain.axes[self._space]:
Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
117
118
            oarr = oarr.reshape(self._domain.shape)
            res = Field.from_global_data(self._domain, oarr, sum_up=True)
Martin Reinecke's avatar
Martin Reinecke committed
119
        else:
Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
120
121
            oarr = oarr.reshape(self._domain.local_shape)
            res = Field.from_local_data(self._domain, oarr)
122
        return res
Martin Reinecke's avatar
Martin Reinecke committed
123

Martin Reinecke's avatar
Martin Reinecke committed
124
    def _times(self, x):
Martin Reinecke's avatar
Martin Reinecke committed
125
        if dobj.distaxis(x.val) in x.domain.axes[self._space]:
126
            arr = x.to_global_data()
Martin Reinecke's avatar
Martin Reinecke committed
127
        else:
Martin Reinecke's avatar
Martin Reinecke committed
128
            arr = x.local_data
Martin Reinecke's avatar
Martin Reinecke committed
129
        arr = arr.reshape(self._hshape)
Martin Reinecke's avatar
Martin Reinecke committed
130
131
132
133
        oarr = np.empty(self._pshape, dtype=x.dtype)
        oarr[()] = arr[(slice(None), self._dofdex, slice(None))]
        return Field.from_local_data(
            self._target, oarr.reshape(self._target.local_shape))
Martin Reinecke's avatar
Martin Reinecke committed
134

Martin Reinecke's avatar
Martin Reinecke committed
135
136
    def apply(self, x, mode):
        self._check_input(x, mode)
Martin Reinecke's avatar
Martin Reinecke committed
137
        return self._times(x) if mode == self.TIMES else self._adjoint_times(x)
Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171


class PowerDistributor(DOFDistributor):
    """Operator which transforms between a PowerSpace and a harmonic domain.

    Parameters
    ----------
    target: Domain, tuple of Domain, or DomainTuple
        the total *target* domain of the operator.
    power_space: PowerSpace, optional
        the input sub-domain on which the operator acts.
        If not supplied, a matching PowerSpace with natural binbounds will be
        used.
    space: int, optional:
       The index of the sub-domain on which the operator acts.
       Can be omitted if `target` only has one sub-domain.
    """

    def __init__(self, target, power_space=None, space=None):
        # Initialize domain and target
        self._target = DomainTuple.make(target)
        self._space = infer_space(self._target, space)
        hspace = self._target[self._space]
        if not hspace.harmonic:
            raise ValueError("Operator requires harmonic target space")
        if power_space is None:
            power_space = PowerSpace(hspace)
        else:
            if not isinstance(power_space, PowerSpace):
                raise TypeError("power_space argument must be a PowerSpace")
            if power_space.harmonic_partner != hspace:
                raise ValueError("power_space does not match its partner")

        self._init2(power_space.pindex, self._space, power_space)