field.py 29.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# NIFTy
# Copyright (C) 2017  Theo Steininger
#
# Author: Theo Steininger
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

csongor's avatar
csongor committed
19
20
21
from __future__ import division
import numpy as np

Theo Steininger's avatar
Theo Steininger committed
22
23
from keepers import Versionable,\
                    Loggable
Jait Dixit's avatar
Jait Dixit committed
24

25
from d2o import distributed_data_object,\
26
    STRATEGIES as DISTRIBUTION_STRATEGIES
csongor's avatar
csongor committed
27

28
from nifty.config import nifty_configuration as gc
csongor's avatar
csongor committed
29

30
from nifty.domain_object import DomainObject
31

32
from nifty.spaces.power_space import PowerSpace
csongor's avatar
csongor committed
33

csongor's avatar
csongor committed
34
import nifty.nifty_utilities as utilities
35
36
from nifty.random import Random

csongor's avatar
csongor committed
37

Jait Dixit's avatar
Jait Dixit committed
38
class Field(Loggable, Versionable, object):
Theo Steininger's avatar
Theo Steininger committed
39
    # ---Initialization methods---
40

41
    def __init__(self, domain=None, val=None, dtype=None,
42
                 distribution_strategy=None, copy=False):
csongor's avatar
csongor committed
43

44
        self.domain = self._parse_domain(domain=domain, val=val)
45
        self.domain_axes = self._get_axes_tuple(self.domain)
csongor's avatar
csongor committed
46

Theo Steininger's avatar
Theo Steininger committed
47
        self.dtype = self._infer_dtype(dtype=dtype,
48
                                       val=val)
49

50
51
52
        self.distribution_strategy = self._parse_distribution_strategy(
                                distribution_strategy=distribution_strategy,
                                val=val)
csongor's avatar
csongor committed
53

54
55
56
57
        if val is None:
            self._val = None
        else:
            self.set_val(new_val=val, copy=copy)
csongor's avatar
csongor committed
58

59
    def _parse_domain(self, domain, val=None):
60
        if domain is None:
61
62
63
64
            if isinstance(val, Field):
                domain = val.domain
            else:
                domain = ()
65
        elif isinstance(domain, DomainObject):
66
            domain = (domain,)
67
68
69
        elif not isinstance(domain, tuple):
            domain = tuple(domain)

csongor's avatar
csongor committed
70
        for d in domain:
71
            if not isinstance(d, DomainObject):
72
73
                raise TypeError(
                    "Given domain contains something that is not a "
74
                    "DomainObject instance.")
csongor's avatar
csongor committed
75
76
        return domain

Theo Steininger's avatar
Theo Steininger committed
77
78
79
80
81
82
83
84
85
86
    def _get_axes_tuple(self, things_with_shape, start=0):
        i = start
        axes_list = []
        for thing in things_with_shape:
            l = []
            for j in range(len(thing.shape)):
                l += [i]
                i += 1
            axes_list += [tuple(l)]
        return tuple(axes_list)
87

88
    def _infer_dtype(self, dtype, val):
csongor's avatar
csongor committed
89
        if dtype is None:
90
            try:
91
                dtype = val.dtype
92
93
94
            except AttributeError:
                if val is not None:
                    dtype = np.result_type(val)
Theo Steininger's avatar
Theo Steininger committed
95
        else:
96
                    dtype = np.dtype(gc['default_field_dtype'])
Theo Steininger's avatar
Theo Steininger committed
97
        else:
98
            dtype = np.dtype(dtype)
99

Theo Steininger's avatar
Theo Steininger committed
100
        return dtype
101

102
103
    def _parse_distribution_strategy(self, distribution_strategy, val):
        if distribution_strategy is None:
104
            if isinstance(val, distributed_data_object):
105
                distribution_strategy = val.distribution_strategy
106
            elif isinstance(val, Field):
107
                distribution_strategy = val.distribution_strategy
108
            else:
109
                self.logger.debug("distribution_strategy set to default!")
110
                distribution_strategy = gc['default_distribution_strategy']
111
        elif distribution_strategy not in DISTRIBUTION_STRATEGIES['global']:
112
113
114
            raise ValueError(
                    "distribution_strategy must be a global-type "
                    "strategy.")
115
        return distribution_strategy
116
117

    # ---Factory methods---
118

119
    @classmethod
120
    def from_random(cls, random_type, domain=None, dtype=None,
121
                    distribution_strategy=None, **kwargs):
122
        # create a initially empty field
123
        f = cls(domain=domain, dtype=dtype,
124
                distribution_strategy=distribution_strategy)
125
126
127
128
129
130
131

        # now use the processed input in terms of f in order to parse the
        # random arguments
        random_arguments = cls._parse_random_arguments(random_type=random_type,
                                                       f=f,
                                                       **kwargs)

Martin Reinecke's avatar
Martin Reinecke committed
132
        # extract the distributed_data_object from f and apply the appropriate
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
        # random number generator to it
        sample = f.get_val(copy=False)
        generator_function = getattr(Random, random_type)
        sample.apply_generator(
            lambda shape: generator_function(dtype=f.dtype,
                                             shape=shape,
                                             **random_arguments))
        return f

    @staticmethod
    def _parse_random_arguments(random_type, f, **kwargs):

        if random_type == "pm1":
            random_arguments = {}

        elif random_type == "normal":
            mean = kwargs.get('mean', 0)
            std = kwargs.get('std', 1)
            random_arguments = {'mean': mean,
                                'std': std}

        elif random_type == "uniform":
            low = kwargs.get('low', 0)
            high = kwargs.get('high', 1)
            random_arguments = {'low': low,
                                'high': high}

csongor's avatar
csongor committed
160
        else:
161
162
            raise KeyError(
                "unsupported random key '" + str(random_type) + "'.")
csongor's avatar
csongor committed
163

164
        return random_arguments
csongor's avatar
csongor committed
165

166
167
168
169
    # ---Powerspectral methods---

    def power_analyze(self, spaces=None, log=False, nbin=None, binbounds=None,
                      real_signal=True):
Theo Steininger's avatar
Theo Steininger committed
170
        # check if all spaces in `self.domain` are either harmonic or
171
172
173
        # power_space instances
        for sp in self.domain:
            if not sp.harmonic and not isinstance(sp, PowerSpace):
Theo Steininger's avatar
Theo Steininger committed
174
                self.logger.info(
175
                    "Field has a space in `domain` which is neither "
176
177
178
                    "harmonic nor a PowerSpace.")

        # check if the `spaces` input is valid
179
180
181
182
183
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
        if spaces is None:
            if len(self.domain) == 1:
                spaces = (0,)
            else:
184
185
186
                raise ValueError(
                    "Field has multiple spaces as domain "
                    "but `spaces` is None.")
187
188

        if len(spaces) == 0:
189
190
            raise ValueError(
                "No space for analysis specified.")
191
        elif len(spaces) > 1:
192
193
            raise ValueError(
                "Conversion of only one space at a time is allowed.")
194
195
196
197

        space_index = spaces[0]

        if not self.domain[space_index].harmonic:
198
199
            raise ValueError(
                "The analyzed space must be harmonic.")
200

201
202
203
204
205
206
        # Create the target PowerSpace instance:
        # If the associated signal-space field was real, we extract the
        # hermitian and anti-hermitian parts of `self` and put them
        # into the real and imaginary parts of the power spectrum.
        # If it was complex, all the power is put into a real power spectrum.

207
208
209
210
        distribution_strategy = \
            self.val.get_axes_local_distribution_strategy(
                self.domain_axes[space_index])

211
212
213
214
215
        if real_signal:
            power_dtype = np.dtype('complex')
        else:
            power_dtype = np.dtype('float')

216
217
        harmonic_domain = self.domain[space_index]
        power_domain = PowerSpace(harmonic_domain=harmonic_domain,
218
                                  distribution_strategy=distribution_strategy,
219
220
                                  log=log, nbin=nbin, binbounds=binbounds,
                                  dtype=power_dtype)
221

222
        # extract pindex and rho from power_domain
223
224
        pindex = power_domain.pindex
        rho = power_domain.rho
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242

        if real_signal:
            hermitian_part, anti_hermitian_part = \
                harmonic_domain.hermitian_decomposition(
                                            self.val,
                                            axes=self.domain_axes[space_index])

            [hermitian_power, anti_hermitian_power] = \
                [self._calculate_power_spectrum(
                                            x=part,
                                            pindex=pindex,
                                            rho=rho,
                                            axes=self.domain_axes[space_index])
                 for part in [hermitian_part, anti_hermitian_part]]

            power_spectrum = hermitian_power + 1j * anti_hermitian_power
        else:
            power_spectrum = self._calculate_power_spectrum(
243
244
245
246
247
248
249
250
251
                                            x=self.val,
                                            pindex=pindex,
                                            rho=rho,
                                            axes=self.domain_axes[space_index])

        # create the result field and put power_spectrum into it
        result_domain = list(self.domain)
        result_domain[space_index] = power_domain

252
253
254
        result_field = self.copy_empty(
                   domain=result_domain,
                   distribution_strategy=power_spectrum.distribution_strategy)
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
        result_field.set_val(new_val=power_spectrum, copy=False)

        return result_field

    def _calculate_power_spectrum(self, x, pindex, rho, axes=None):
        fieldabs = abs(x)
        fieldabs **= 2

        if axes is not None:
            pindex = self._shape_up_pindex(
                                    pindex=pindex,
                                    target_shape=x.shape,
                                    target_strategy=x.distribution_strategy,
                                    axes=axes)
        power_spectrum = pindex.bincount(weights=fieldabs,
                                         axis=axes)
        if axes is not None:
            new_rho_shape = [1, ] * len(power_spectrum.shape)
            new_rho_shape[axes[0]] = len(rho)
            rho = rho.reshape(new_rho_shape)
        power_spectrum /= rho

        power_spectrum **= 0.5
        return power_spectrum

    def _shape_up_pindex(self, pindex, target_shape, target_strategy, axes):
        if pindex.distribution_strategy not in \
                DISTRIBUTION_STRATEGIES['global']:
283
            raise ValueError("pindex's distribution strategy must be "
284
285
286
287
288
289
                             "global-type")

        if pindex.distribution_strategy in DISTRIBUTION_STRATEGIES['slicing']:
            if ((0 not in axes) or
                    (target_strategy is not pindex.distribution_strategy)):
                raise ValueError(
290
                    "A slicing distributor shall not be reshaped to "
291
292
293
294
295
296
297
298
299
300
301
302
303
                    "something non-sliced.")

        semiscaled_shape = [1, ] * len(target_shape)
        for i in axes:
            semiscaled_shape[i] = target_shape[i]
        local_data = pindex.get_local_data(copy=False)
        semiscaled_local_data = local_data.reshape(semiscaled_shape)
        result_obj = pindex.copy_empty(global_shape=target_shape,
                                       distribution_strategy=target_strategy)
        result_obj.set_full_data(semiscaled_local_data, copy=False)

        return result_obj

304
    def power_synthesize(self, spaces=None, real_power=True, real_signal=True,
305
                         mean=None, std=None):
306

307
308
309
        # check if the `spaces` input is valid
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))

310
311
312
313
314
        for power_space_index in spaces:
            power_space = self.domain[power_space_index]
            if not isinstance(power_space, PowerSpace):
                raise ValueError("A PowerSpace is needed for field "
                                 "synthetization.")
315
316
317

        # create the result domain
        result_domain = list(self.domain)
318
319
320
321
        for power_space_index in spaces:
            power_space = self.domain[power_space_index]
            harmonic_domain = power_space.harmonic_domain
            result_domain[power_space_index] = harmonic_domain
322
323
324

        # create random samples: one or two, depending on whether the
        # power spectrum is real or complex
325
        if real_power:
326
            result_list = [None]
327
328
        else:
            result_list = [None, None]
329

330
331
        result_list = [self.__class__.from_random(
                             'normal',
332
333
334
                             mean=mean,
                             std=std,
                             domain=result_domain,
335
                             dtype=np.complex,
336
                             distribution_strategy=self.distribution_strategy)
337
338
339
340
341
342
                       for x in result_list]

        # from now on extract the values from the random fields for further
        # processing without killing the fields.
        # if the signal-space field should be real, hermitianize the field
        # components
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360

        spec = self.val.get_full_data()
        for power_space_index in spaces:
            spec = self._spec_to_rescaler(spec, result_list, power_space_index)
        local_rescaler = spec

        result_val_list = [x.val for x in result_list]

        # apply the rescaler to the random fields
        result_val_list[0].apply_scalar_function(
                                            lambda x: x * local_rescaler.real,
                                            inplace=True)

        if not real_power:
            result_val_list[1].apply_scalar_function(
                                            lambda x: x * local_rescaler.imag,
                                            inplace=True)

361
        if real_signal:
362
363
            for power_space_index in spaces:
                harmonic_domain = result_domain[power_space_index]
364
365
366
367
368
369
                result_val_list = [harmonic_domain.hermitian_decomposition(
                                    result_val,
                                    axes=result.domain_axes[power_space_index],
                                    preserve_gaussian_variance=True)[0]
                                   for (result, result_val)
                                   in zip(result_list, result_val_list)]
370
371
372
373
374
375
376

        # store the result into the fields
        [x.set_val(new_val=y, copy=False) for x, y in
            zip(result_list, result_val_list)]

        if real_power:
            result = result_list[0]
377
        else:
378
379
380
381
382
383
            result = result_list[0] + 1j*result_list[1]

        return result

    def _spec_to_rescaler(self, spec, result_list, power_space_index):
        power_space = self.domain[power_space_index]
384
385
386

        # weight the random fields with the power spectrum
        # therefore get the pindex from the power space
387
        pindex = power_space.pindex
388
389
390
391
392
393
394
        # take the local data from pindex. This data must be compatible to the
        # local data of the field given the slice of the PowerSpace
        local_distribution_strategy = \
            result_list[0].val.get_axes_local_distribution_strategy(
                result_list[0].domain_axes[power_space_index])

        if pindex.distribution_strategy is not local_distribution_strategy:
395
            self.logger.warn(
396
                "The distribution_stragey of pindex does not fit the "
397
398
399
400
401
402
403
404
405
406
                "slice_local distribution strategy of the synthesized field.")

        # Now use numpy advanced indexing in order to put the entries of the
        # power spectrum into the appropriate places of the pindex array.
        # Do this for every 'pindex-slice' in parallel using the 'slice(None)'s
        local_pindex = pindex.get_local_data(copy=False)

        local_blow_up = [slice(None)]*len(self.shape)
        local_blow_up[self.domain_axes[power_space_index][0]] = local_pindex
        # here, the power_spectrum is distributed into the new shape
407
408
        local_rescaler = spec[local_blow_up]
        return local_rescaler
409

Theo Steininger's avatar
Theo Steininger committed
410
    # ---Properties---
411

Theo Steininger's avatar
Theo Steininger committed
412
    def set_val(self, new_val=None, copy=False):
413
414
        new_val = self.cast(new_val)
        if copy:
Theo Steininger's avatar
Theo Steininger committed
415
416
            new_val = new_val.copy()
        self._val = new_val
417
        return self
csongor's avatar
csongor committed
418

419
    def get_val(self, copy=False):
420
421
422
        if self._val is None:
            self.set_val(None)

423
        if copy:
Theo Steininger's avatar
Theo Steininger committed
424
            return self._val.copy()
425
        else:
Theo Steininger's avatar
Theo Steininger committed
426
            return self._val
csongor's avatar
csongor committed
427

Theo Steininger's avatar
Theo Steininger committed
428
429
    @property
    def val(self):
430
        return self.get_val(copy=False)
csongor's avatar
csongor committed
431

Theo Steininger's avatar
Theo Steininger committed
432
433
    @val.setter
    def val(self, new_val):
434
        self.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
435

436
437
    @property
    def shape(self):
438
        shape_tuple = tuple(sp.shape for sp in self.domain)
439
440
441
442
        try:
            global_shape = reduce(lambda x, y: x + y, shape_tuple)
        except TypeError:
            global_shape = ()
csongor's avatar
csongor committed
443

444
        return global_shape
csongor's avatar
csongor committed
445

446
447
    @property
    def dim(self):
448
        dim_tuple = tuple(sp.dim for sp in self.domain)
Theo Steininger's avatar
Theo Steininger committed
449
450
451
452
        try:
            return reduce(lambda x, y: x * y, dim_tuple)
        except TypeError:
            return 0
csongor's avatar
csongor committed
453

454
455
    @property
    def dof(self):
Theo Steininger's avatar
Theo Steininger committed
456
457
458
459
460
461
462
463
        dof = self.dim
        if issubclass(self.dtype.type, np.complexfloating):
            dof *= 2
        return dof

    @property
    def total_volume(self):
        volume_tuple = tuple(sp.total_volume for sp in self.domain)
464
        try:
Theo Steininger's avatar
Theo Steininger committed
465
            return reduce(lambda x, y: x * y, volume_tuple)
466
        except TypeError:
Theo Steininger's avatar
Theo Steininger committed
467
            return 0.
468

Theo Steininger's avatar
Theo Steininger committed
469
    # ---Special unary/binary operations---
470

csongor's avatar
csongor committed
471
472
473
    def cast(self, x=None, dtype=None):
        if dtype is None:
            dtype = self.dtype
474
475
        else:
            dtype = np.dtype(dtype)
476

477
478
        casted_x = x

479
        for ind, sp in enumerate(self.domain):
480
            casted_x = sp.pre_cast(casted_x,
481
482
483
                                   axes=self.domain_axes[ind])

        casted_x = self._actual_cast(casted_x, dtype=dtype)
484
485

        for ind, sp in enumerate(self.domain):
486
487
            casted_x = sp.post_cast(casted_x,
                                    axes=self.domain_axes[ind])
488

489
        return casted_x
csongor's avatar
csongor committed
490

Theo Steininger's avatar
Theo Steininger committed
491
    def _actual_cast(self, x, dtype=None):
492
        if isinstance(x, Field):
csongor's avatar
csongor committed
493
494
495
496
497
            x = x.get_val()

        if dtype is None:
            dtype = self.dtype

498
        return_x = distributed_data_object(
499
500
501
                            global_shape=self.shape,
                            dtype=dtype,
                            distribution_strategy=self.distribution_strategy)
502
503
        return_x.set_full_data(x, copy=False)
        return return_x
Theo Steininger's avatar
Theo Steininger committed
504

505
    def copy(self, domain=None, dtype=None, distribution_strategy=None):
Theo Steininger's avatar
Theo Steininger committed
506
        copied_val = self.get_val(copy=True)
507
508
509
510
        new_field = self.copy_empty(
                                domain=domain,
                                dtype=dtype,
                                distribution_strategy=distribution_strategy)
Theo Steininger's avatar
Theo Steininger committed
511
512
        new_field.set_val(new_val=copied_val, copy=False)
        return new_field
csongor's avatar
csongor committed
513

514
    def copy_empty(self, domain=None, dtype=None, distribution_strategy=None):
Theo Steininger's avatar
Theo Steininger committed
515
516
        if domain is None:
            domain = self.domain
csongor's avatar
csongor committed
517
        else:
Theo Steininger's avatar
Theo Steininger committed
518
            domain = self._parse_domain(domain)
csongor's avatar
csongor committed
519

Theo Steininger's avatar
Theo Steininger committed
520
521
522
523
        if dtype is None:
            dtype = self.dtype
        else:
            dtype = np.dtype(dtype)
csongor's avatar
csongor committed
524

525
526
        if distribution_strategy is None:
            distribution_strategy = self.distribution_strategy
csongor's avatar
csongor committed
527

Theo Steininger's avatar
Theo Steininger committed
528
529
530
531
532
533
534
535
536
537
        fast_copyable = True
        try:
            for i in xrange(len(self.domain)):
                if self.domain[i] is not domain[i]:
                    fast_copyable = False
                    break
        except IndexError:
            fast_copyable = False

        if (fast_copyable and dtype == self.dtype and
538
                distribution_strategy == self.distribution_strategy):
Theo Steininger's avatar
Theo Steininger committed
539
540
541
542
            new_field = self._fast_copy_empty()
        else:
            new_field = Field(domain=domain,
                              dtype=dtype,
543
                              distribution_strategy=distribution_strategy)
Theo Steininger's avatar
Theo Steininger committed
544
        return new_field
csongor's avatar
csongor committed
545

Theo Steininger's avatar
Theo Steininger committed
546
547
548
549
550
551
552
    def _fast_copy_empty(self):
        # make an empty field
        new_field = EmptyField()
        # repair its class
        new_field.__class__ = self.__class__
        # copy domain, codomain and val
        for key, value in self.__dict__.items():
553
            if key != '_val':
Theo Steininger's avatar
Theo Steininger committed
554
555
556
557
558
559
                new_field.__dict__[key] = value
            else:
                new_field.__dict__[key] = self.val.copy_empty()
        return new_field

    def weight(self, power=1, inplace=False, spaces=None):
560
        if inplace:
csongor's avatar
csongor committed
561
562
563
564
            new_field = self
        else:
            new_field = self.copy_empty()

565
        new_val = self.get_val(copy=False)
csongor's avatar
csongor committed
566

567
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
csongor's avatar
csongor committed
568
        if spaces is None:
Theo Steininger's avatar
Theo Steininger committed
569
            spaces = range(len(self.domain))
csongor's avatar
csongor committed
570

571
        for ind, sp in enumerate(self.domain):
Theo Steininger's avatar
Theo Steininger committed
572
573
574
575
576
            if ind in spaces:
                new_val = sp.weight(new_val,
                                    power=power,
                                    axes=self.domain_axes[ind],
                                    inplace=inplace)
577
578

        new_field.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
579
580
        return new_field

581
582
583
584
585
    def dot(self, x=None, spaces=None, bare=False):

        if not isinstance(x, Field):
            raise ValueError("The dot-partner must be an instance of " +
                             "the NIFTy field class")
Theo Steininger's avatar
Theo Steininger committed
586

Martin Reinecke's avatar
Martin Reinecke committed
587
        # Compute the dot respecting the fact of discrete/continuous spaces
Theo Steininger's avatar
Theo Steininger committed
588
589
590
591
592
        if bare:
            y = self
        else:
            y = self.weight(power=1)

593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
        if spaces is None:
            x_val = x.get_val(copy=False)
            y_val = y.get_val(copy=False)
            result = (x_val.conjugate() * y_val).sum()
            return result
        else:
            # create a diagonal operator which is capable of taking care of the
            # axes-matching
            from nifty.operators.diagonal_operator import DiagonalOperator
            diagonal = y.val.conjugate()
            diagonalOperator = DiagonalOperator(domain=y.domain,
                                                diagonal=diagonal,
                                                copy=False)
            dotted = diagonalOperator(x, spaces=spaces)
            return dotted.sum(spaces=spaces)
Theo Steininger's avatar
Theo Steininger committed
608

609
    def norm(self, q=2):
csongor's avatar
csongor committed
610
611
612
613
614
615
616
617
618
619
620
621
622
623
        """
            Computes the Lq-norm of the field values.

            Parameters
            ----------
            q : scalar
                Parameter q of the Lq-norm (default: 2).

            Returns
            -------
            norm : scalar
                The Lq-norm of the field values.

        """
624
        if q == 2:
625
            return (self.dot(x=self)) ** (1 / 2)
csongor's avatar
csongor committed
626
        else:
627
            return self.dot(x=self ** (q - 1)) ** (1 / q)
csongor's avatar
csongor committed
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643

    def conjugate(self, inplace=False):
        """
            Computes the complex conjugate of the field.

            Returns
            -------
            cc : field
                The complex conjugated field.

        """
        if inplace:
            work_field = self
        else:
            work_field = self.copy_empty()

644
        new_val = self.get_val(copy=False)
Theo Steininger's avatar
Theo Steininger committed
645
        new_val = new_val.conjugate()
646
        work_field.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
647
648
649

        return work_field

Theo Steininger's avatar
Theo Steininger committed
650
    # ---General unary/contraction methods---
651

Theo Steininger's avatar
Theo Steininger committed
652
653
    def __pos__(self):
        return self.copy()
654

Theo Steininger's avatar
Theo Steininger committed
655
656
657
658
    def __neg__(self):
        return_field = self.copy_empty()
        new_val = -self.get_val(copy=False)
        return_field.set_val(new_val, copy=False)
csongor's avatar
csongor committed
659
660
        return return_field

Theo Steininger's avatar
Theo Steininger committed
661
662
663
664
665
    def __abs__(self):
        return_field = self.copy_empty()
        new_val = abs(self.get_val(copy=False))
        return_field.set_val(new_val, copy=False)
        return return_field
csongor's avatar
csongor committed
666

667
    def _contraction_helper(self, op, spaces):
Theo Steininger's avatar
Theo Steininger committed
668
669
670
671
672
        # build a list of all axes
        if spaces is None:
            spaces = xrange(len(self.domain))
        else:
            spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
csongor's avatar
csongor committed
673

674
        axes_list = tuple(self.domain_axes[sp_index] for sp_index in spaces)
675
676

        try:
Theo Steininger's avatar
Theo Steininger committed
677
            axes_list = reduce(lambda x, y: x+y, axes_list)
678
        except TypeError:
Theo Steininger's avatar
Theo Steininger committed
679
            axes_list = ()
csongor's avatar
csongor committed
680

Theo Steininger's avatar
Theo Steininger committed
681
682
683
        # perform the contraction on the d2o
        data = self.get_val(copy=False)
        data = getattr(data, op)(axis=axes_list)
csongor's avatar
csongor committed
684

Theo Steininger's avatar
Theo Steininger committed
685
686
687
        # check if the result is scalar or if a result_field must be constr.
        if np.isscalar(data):
            return data
csongor's avatar
csongor committed
688
        else:
Theo Steininger's avatar
Theo Steininger committed
689
690
691
            return_domain = tuple(self.domain[i]
                                  for i in xrange(len(self.domain))
                                  if i not in spaces)
692

Theo Steininger's avatar
Theo Steininger committed
693
694
695
696
            return_field = Field(domain=return_domain,
                                 val=data,
                                 copy=False)
            return return_field
csongor's avatar
csongor committed
697

698
699
    def sum(self, spaces=None):
        return self._contraction_helper('sum', spaces)
csongor's avatar
csongor committed
700

701
702
    def prod(self, spaces=None):
        return self._contraction_helper('prod', spaces)
csongor's avatar
csongor committed
703

704
705
    def all(self, spaces=None):
        return self._contraction_helper('all', spaces)
csongor's avatar
csongor committed
706

707
708
    def any(self, spaces=None):
        return self._contraction_helper('any', spaces)
csongor's avatar
csongor committed
709

710
711
    def min(self, spaces=None):
        return self._contraction_helper('min', spaces)
csongor's avatar
csongor committed
712

713
714
    def nanmin(self, spaces=None):
        return self._contraction_helper('nanmin', spaces)
csongor's avatar
csongor committed
715

716
717
    def max(self, spaces=None):
        return self._contraction_helper('max', spaces)
csongor's avatar
csongor committed
718

719
720
    def nanmax(self, spaces=None):
        return self._contraction_helper('nanmax', spaces)
csongor's avatar
csongor committed
721

722
723
    def mean(self, spaces=None):
        return self._contraction_helper('mean', spaces)
csongor's avatar
csongor committed
724

725
726
    def var(self, spaces=None):
        return self._contraction_helper('var', spaces)
csongor's avatar
csongor committed
727

728
729
    def std(self, spaces=None):
        return self._contraction_helper('std', spaces)
csongor's avatar
csongor committed
730

Theo Steininger's avatar
Theo Steininger committed
731
    # ---General binary methods---
csongor's avatar
csongor committed
732

Theo Steininger's avatar
Theo Steininger committed
733
    def _binary_helper(self, other, op, inplace=False):
csongor's avatar
csongor committed
734
        # if other is a field, make sure that the domains match
735
        if isinstance(other, Field):
Theo Steininger's avatar
Theo Steininger committed
736
737
738
739
740
            try:
                assert len(other.domain) == len(self.domain)
                for index in xrange(len(self.domain)):
                    assert other.domain[index] == self.domain[index]
            except AssertionError:
741
742
                raise ValueError(
                    "domains are incompatible.")
Theo Steininger's avatar
Theo Steininger committed
743
            other = other.get_val(copy=False)
csongor's avatar
csongor committed
744

Theo Steininger's avatar
Theo Steininger committed
745
746
        self_val = self.get_val(copy=False)
        return_val = getattr(self_val, op)(other)
csongor's avatar
csongor committed
747
748
749
750

        if inplace:
            working_field = self
        else:
751
            working_field = self.copy_empty(dtype=return_val.dtype)
csongor's avatar
csongor committed
752

Theo Steininger's avatar
Theo Steininger committed
753
        working_field.set_val(return_val, copy=False)
csongor's avatar
csongor committed
754
755
756
        return working_field

    def __add__(self, other):
Theo Steininger's avatar
Theo Steininger committed
757
        return self._binary_helper(other, op='__add__')
758

759
    def __radd__(self, other):
Theo Steininger's avatar
Theo Steininger committed
760
        return self._binary_helper(other, op='__radd__')
csongor's avatar
csongor committed
761
762

    def __iadd__(self, other):
Theo Steininger's avatar
Theo Steininger committed
763
        return self._binary_helper(other, op='__iadd__', inplace=True)
csongor's avatar
csongor committed
764
765

    def __sub__(self, other):
Theo Steininger's avatar
Theo Steininger committed
766
        return self._binary_helper(other, op='__sub__')
csongor's avatar
csongor committed
767
768

    def __rsub__(self, other):
Theo Steininger's avatar
Theo Steininger committed
769
        return self._binary_helper(other, op='__rsub__')
csongor's avatar
csongor committed
770
771

    def __isub__(self, other):
Theo Steininger's avatar
Theo Steininger committed
772
        return self._binary_helper(other, op='__isub__', inplace=True)
csongor's avatar
csongor committed
773
774

    def __mul__(self, other):
Theo Steininger's avatar
Theo Steininger committed
775
        return self._binary_helper(other, op='__mul__')
776

777
    def __rmul__(self, other):
Theo Steininger's avatar
Theo Steininger committed
778
        return self._binary_helper(other, op='__rmul__')
csongor's avatar
csongor committed
779
780

    def __imul__(self, other):
Theo Steininger's avatar
Theo Steininger committed
781
        return self._binary_helper(other, op='__imul__', inplace=True)
csongor's avatar
csongor committed
782
783

    def __div__(self, other):
Theo Steininger's avatar
Theo Steininger committed
784
        return self._binary_helper(other, op='__div__')
csongor's avatar
csongor committed
785
786

    def __rdiv__(self, other):
Theo Steininger's avatar
Theo Steininger committed
787
        return self._binary_helper(other, op='__rdiv__')
csongor's avatar
csongor committed
788
789

    def __idiv__(self, other):
Theo Steininger's avatar
Theo Steininger committed
790
        return self._binary_helper(other, op='__idiv__', inplace=True)
791

csongor's avatar
csongor committed
792
    def __pow__(self, other):
Theo Steininger's avatar
Theo Steininger committed
793
        return self._binary_helper(other, op='__pow__')
csongor's avatar
csongor committed
794
795

    def __rpow__(self, other):
Theo Steininger's avatar
Theo Steininger committed
796
        return self._binary_helper(other, op='__rpow__')
csongor's avatar
csongor committed
797
798

    def __ipow__(self, other):
Theo Steininger's avatar
Theo Steininger committed
799
        return self._binary_helper(other, op='__ipow__', inplace=True)
csongor's avatar
csongor committed
800
801

    def __lt__(self, other):
Theo Steininger's avatar
Theo Steininger committed
802
        return self._binary_helper(other, op='__lt__')
csongor's avatar
csongor committed
803
804

    def __le__(self, other):
Theo Steininger's avatar
Theo Steininger committed
805
        return self._binary_helper(other, op='__le__')
csongor's avatar
csongor committed
806
807
808
809
810

    def __ne__(self, other):
        if other is None:
            return True
        else:
Theo Steininger's avatar
Theo Steininger committed
811
            return self._binary_helper(other, op='__ne__')
csongor's avatar
csongor committed
812
813
814
815
816

    def __eq__(self, other):
        if other is None:
            return False
        else:
Theo Steininger's avatar
Theo Steininger committed
817
            return self._binary_helper(other, op='__eq__')
csongor's avatar
csongor committed
818
819

    def __ge__(self, other):
Theo Steininger's avatar
Theo Steininger committed
820
        return self._binary_helper(other, op='__ge__')
csongor's avatar
csongor committed
821
822

    def __gt__(self, other):
Theo Steininger's avatar
Theo Steininger committed
823
824
825
826
827
828
829
830
831
832
833
834
835
        return self._binary_helper(other, op='__gt__')

    def __repr__(self):
        return "<nifty_core.field>"

    def __str__(self):
        minmax = [self.min(), self.max()]
        mean = self.mean()
        return "nifty_core.field instance\n- domain      = " + \
               repr(self.domain) + \
               "\n- val         = " + repr(self.get_val()) + \
               "\n  - min.,max. = " + str(minmax) + \
               "\n  - mean = " + str(mean)
csongor's avatar
csongor committed
836

Jait Dixit's avatar
Jait Dixit committed
837
838
839
    # ---Serialization---

    def _to_hdf5(self, hdf5_group):
Theo Steininger's avatar
Theo Steininger committed
840
841
842
        hdf5_group.attrs['dtype'] = self.dtype.name
        hdf5_group.attrs['distribution_strategy'] = self.distribution_strategy
        hdf5_group.attrs['domain_axes'] = str(self.domain_axes)
843
        hdf5_group['num_domain'] = len(self.domain)
Jait Dixit's avatar
Jait Dixit committed
844

Theo Steininger's avatar
Theo Steininger committed
845
846
847
848
        if self._val is None:
            ret_dict = {}
        else:
            ret_dict = {'val': self.val}
Jait Dixit's avatar
Jait Dixit committed
849
850
851
852
853
854
855

        for i in range(len(self.domain)):
            ret_dict['s_' + str(i)] = self.domain[i]

        return ret_dict

    @classmethod
Theo Steininger's avatar
Theo Steininger committed
856
    def _from_hdf5(cls, hdf5_group, repository):
Jait Dixit's avatar
Jait Dixit committed
857
858
859
860
861
862
        # create empty field
        new_field = EmptyField()
        # reset class
        new_field.__class__ = cls
        # set values
        temp_domain = []
863
        for i in range(hdf5_group['num_domain'][()]):
Theo Steininger's avatar
Theo Steininger committed
864
            temp_domain.append(repository.get('s_' + str(i), hdf5_group))
Jait Dixit's avatar
Jait Dixit committed
865
866
        new_field.domain = tuple(temp_domain)

Theo Steininger's avatar
Theo Steininger committed
867
        exec('new_field.domain_axes = ' + hdf5_group.attrs['domain_axes'])
Theo Steininger's avatar
Theo Steininger committed
868
869
870
871
872
873

        try:
            new_field._val = repository.get('val', hdf5_group)
        except(KeyError):
            new_field._val = None

Theo Steininger's avatar
Theo Steininger committed
874
875
876
        new_field.dtype = np.dtype(hdf5_group.attrs['dtype'])
        new_field.distribution_strategy =\
            hdf5_group.attrs['distribution_strategy']
Jait Dixit's avatar
Jait Dixit committed
877
878

        return new_field
879

Theo Steininger's avatar
Theo Steininger committed
880

881
class EmptyField(Field):
csongor's avatar
csongor committed
882
883
    def __init__(self):
        pass