energy_operators.py 6.28 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2018 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.

from __future__ import absolute_import, division, print_function

Philipp Arras's avatar
Philipp Arras committed
21
from .. import utilities
Martin Reinecke's avatar
Martin Reinecke committed
22
23
from ..compat import *
from ..domain_tuple import DomainTuple
Philipp Arras's avatar
Philipp Arras committed
24
25
26
from ..field import Field
from ..linearization import Linearization
from ..sugar import makeOp
Martin Reinecke's avatar
Martin Reinecke committed
27
from .operator import Operator
Martin Reinecke's avatar
fix    
Martin Reinecke committed
28
from .sampling_enabler import SamplingEnabler
Philipp Arras's avatar
Philipp Arras committed
29
from .sandwich_operator import SandwichOperator
Martin Reinecke's avatar
Martin Reinecke committed
30
from .simple_linear_operators import VdotOperator
Martin Reinecke's avatar
Martin Reinecke committed
31
32
33
34
35
36
37
38
39
40
41


class EnergyOperator(Operator):
    _target = DomainTuple.scalar_domain()


class SquaredNormOperator(EnergyOperator):
    def __init__(self, domain):
        self._domain = domain

    def apply(self, x):
42
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
43
        if isinstance(x, Linearization):
Martin Reinecke's avatar
Martin Reinecke committed
44
            val = Field.scalar(x.val.vdot(x.val))
Martin Reinecke's avatar
Martin Reinecke committed
45
            jac = VdotOperator(2*x.val)(x.jac)
46
            return x.new(val, jac)
Martin Reinecke's avatar
Martin Reinecke committed
47
        return Field.scalar(x.vdot(x))
Martin Reinecke's avatar
Martin Reinecke committed
48
49
50
51
52
53
54
55


class QuadraticFormOperator(EnergyOperator):
    def __init__(self, op):
        from .endomorphic_operator import EndomorphicOperator
        if not isinstance(op, EndomorphicOperator):
            raise TypeError("op must be an EndomorphicOperator")
        self._op = op
Martin Reinecke's avatar
Martin Reinecke committed
56
        self._domain = op.domain
Martin Reinecke's avatar
Martin Reinecke committed
57
58

    def apply(self, x):
59
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
60
        if isinstance(x, Linearization):
Martin Reinecke's avatar
Martin Reinecke committed
61
62
            t1 = self._op(x.val)
            jac = VdotOperator(t1)(x.jac)
Martin Reinecke's avatar
Martin Reinecke committed
63
            val = Field.scalar(0.5*x.val.vdot(t1))
64
            return x.new(val, jac)
Martin Reinecke's avatar
Martin Reinecke committed
65
        return Field.scalar(0.5*x.vdot(self._op(x)))
Martin Reinecke's avatar
Martin Reinecke committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79


class GaussianEnergy(EnergyOperator):
    def __init__(self, mean=None, covariance=None, domain=None):
        self._domain = None
        if mean is not None:
            self._checkEquivalence(mean.domain)
        if covariance is not None:
            self._checkEquivalence(covariance.domain)
        if domain is not None:
            self._checkEquivalence(domain)
        if self._domain is None:
            raise ValueError("no domain given")
        self._mean = mean
Martin Reinecke's avatar
Martin Reinecke committed
80
81
82
83
        if covariance is None:
            self._op = SquaredNormOperator(self._domain).scale(0.5)
        else:
            self._op = QuadraticFormOperator(covariance.inverse)
Martin Reinecke's avatar
Martin Reinecke committed
84
85
86
87
        self._icov = None if covariance is None else covariance.inverse

    def _checkEquivalence(self, newdom):
        if self._domain is None:
88
            self._domain = DomainTuple.make(newdom)
Martin Reinecke's avatar
Martin Reinecke committed
89
        else:
90
            if self._domain != DomainTuple.make(newdom):
Martin Reinecke's avatar
Martin Reinecke committed
91
92
93
                raise ValueError("domain mismatch")

    def apply(self, x):
94
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
95
        residual = x if self._mean is None else x-self._mean
Philipp Arras's avatar
Changes    
Philipp Arras committed
96
        res = self._op(residual).real
97
        if not isinstance(x, Linearization) or not x.want_metric:
Martin Reinecke's avatar
Martin Reinecke committed
98
99
100
101
102
103
104
105
            return res
        metric = SandwichOperator.make(x.jac, self._icov)
        return res.add_metric(metric)


class PoissonianEnergy(EnergyOperator):
    def __init__(self, op, d):
        self._op, self._d = op, d
Martin Reinecke's avatar
Martin Reinecke committed
106
        self._domain = d.domain
Martin Reinecke's avatar
Martin Reinecke committed
107
108

    def apply(self, x):
109
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
110
111
112
        x = self._op(x)
        res = x.sum() - x.log().vdot(self._d)
        if not isinstance(x, Linearization):
Martin Reinecke's avatar
Martin Reinecke committed
113
            return Field.scalar(res)
114
115
        if not x.want_metric:
            return res
Martin Reinecke's avatar
Martin Reinecke committed
116
117
118
        metric = SandwichOperator.make(x.jac, makeOp(1./x.val))
        return res.add_metric(metric)

119

120
121
122
123
124
125
class InverseGammaLikelihood(EnergyOperator):
    def __init__(self, op, d):
        self._op, self._d = op, d
        self._domain = d.domain

    def apply(self, x):
126
        self._check_input(x)
127
        x = self._op(x)
Philipp Frank's avatar
Philipp Frank committed
128
        res = 0.5*(x.log().sum() + (1./x).vdot(self._d))
129
130
        if not isinstance(x, Linearization):
            return Field.scalar(res)
131
132
        if not x.want_metric:
            return res
133
134
135
136
        metric = SandwichOperator.make(x.jac, makeOp(0.5/(x.val**2)))
        return res.add_metric(metric)


Martin Reinecke's avatar
Martin Reinecke committed
137
138
139
140
class BernoulliEnergy(EnergyOperator):
    def __init__(self, p, d):
        self._p = p
        self._d = d
Martin Reinecke's avatar
Martin Reinecke committed
141
        self._domain = d.domain
Martin Reinecke's avatar
Martin Reinecke committed
142
143

    def apply(self, x):
144
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
145
146
147
        x = self._p(x)
        v = x.log().vdot(-self._d) - (1.-x).log().vdot(1.-self._d)
        if not isinstance(x, Linearization):
Martin Reinecke's avatar
Martin Reinecke committed
148
            return Field.scalar(v)
149
150
        if not x.want_metric:
            return v
Martin Reinecke's avatar
Martin Reinecke committed
151
152
153
154
155
156
157
158
159
160
        met = makeOp(1./(x.val*(1.-x.val)))
        met = SandwichOperator.make(x.jac, met)
        return v.add_metric(met)


class Hamiltonian(EnergyOperator):
    def __init__(self, lh, ic_samp=None):
        self._lh = lh
        self._prior = GaussianEnergy(domain=lh.domain)
        self._ic_samp = ic_samp
Martin Reinecke's avatar
Martin Reinecke committed
161
        self._domain = lh.domain
Martin Reinecke's avatar
Martin Reinecke committed
162
163

    def apply(self, x):
164
        self._check_input(x)
165
166
        if (self._ic_samp is None or not isinstance(x, Linearization) or
                not x.want_metric):
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
167
            return self._lh(x)+self._prior(x)
Martin Reinecke's avatar
Martin Reinecke committed
168
        else:
169
            lhx, prx = self._lh(x), self._prior(x)
Martin Reinecke's avatar
Martin Reinecke committed
170
171
172
173
174
175
176
177
178
179
180
181
182
            mtr = SamplingEnabler(lhx.metric, prx.metric.inverse,
                                  self._ic_samp, prx.metric.inverse)
            return (lhx+prx).add_metric(mtr)


class SampledKullbachLeiblerDivergence(EnergyOperator):
    def __init__(self, h, res_samples):
        """
        # MR FIXME: does h have to be a Hamiltonian? Couldn't it be any energy?
        h: Hamiltonian
        N: Number of samples to be used
        """
        self._h = h
Martin Reinecke's avatar
Martin Reinecke committed
183
        self._domain = h.domain
Martin Reinecke's avatar
Martin Reinecke committed
184
185
186
        self._res_samples = tuple(res_samples)

    def apply(self, x):
187
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
188
189
        mymap = map(lambda v: self._h(x+v), self._res_samples)
        return utilities.my_sum(mymap) * (1./len(self._res_samples))