energy_operators.py 6.28 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2018 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.

from __future__ import absolute_import, division, print_function

Philipp Arras's avatar
Philipp Arras committed
21
from .. import utilities
Martin Reinecke's avatar
Martin Reinecke committed
22 23
from ..compat import *
from ..domain_tuple import DomainTuple
Philipp Arras's avatar
Philipp Arras committed
24 25 26
from ..field import Field
from ..linearization import Linearization
from ..sugar import makeOp
Martin Reinecke's avatar
Martin Reinecke committed
27
from .operator import Operator
Martin Reinecke's avatar
fix  
Martin Reinecke committed
28
from .sampling_enabler import SamplingEnabler
Philipp Arras's avatar
Philipp Arras committed
29
from .sandwich_operator import SandwichOperator
Martin Reinecke's avatar
Martin Reinecke committed
30
from .simple_linear_operators import VdotOperator
Martin Reinecke's avatar
Martin Reinecke committed
31 32 33 34 35 36 37 38 39 40 41


class EnergyOperator(Operator):
    _target = DomainTuple.scalar_domain()


class SquaredNormOperator(EnergyOperator):
    def __init__(self, domain):
        self._domain = domain

    def apply(self, x):
42
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
43
        if isinstance(x, Linearization):
Martin Reinecke's avatar
Martin Reinecke committed
44
            val = Field.scalar(x.val.vdot(x.val))
Martin Reinecke's avatar
Martin Reinecke committed
45
            jac = VdotOperator(2*x.val)(x.jac)
46
            return x.new(val, jac)
Martin Reinecke's avatar
Martin Reinecke committed
47
        return Field.scalar(x.vdot(x))
Martin Reinecke's avatar
Martin Reinecke committed
48 49 50 51 52 53 54 55


class QuadraticFormOperator(EnergyOperator):
    def __init__(self, op):
        from .endomorphic_operator import EndomorphicOperator
        if not isinstance(op, EndomorphicOperator):
            raise TypeError("op must be an EndomorphicOperator")
        self._op = op
Martin Reinecke's avatar
Martin Reinecke committed
56
        self._domain = op.domain
Martin Reinecke's avatar
Martin Reinecke committed
57 58

    def apply(self, x):
59
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
60
        if isinstance(x, Linearization):
Martin Reinecke's avatar
Martin Reinecke committed
61 62
            t1 = self._op(x.val)
            jac = VdotOperator(t1)(x.jac)
Martin Reinecke's avatar
Martin Reinecke committed
63
            val = Field.scalar(0.5*x.val.vdot(t1))
64
            return x.new(val, jac)
Martin Reinecke's avatar
Martin Reinecke committed
65
        return Field.scalar(0.5*x.vdot(self._op(x)))
Martin Reinecke's avatar
Martin Reinecke committed
66 67 68 69 70 71 72 73 74 75 76 77 78 79


class GaussianEnergy(EnergyOperator):
    def __init__(self, mean=None, covariance=None, domain=None):
        self._domain = None
        if mean is not None:
            self._checkEquivalence(mean.domain)
        if covariance is not None:
            self._checkEquivalence(covariance.domain)
        if domain is not None:
            self._checkEquivalence(domain)
        if self._domain is None:
            raise ValueError("no domain given")
        self._mean = mean
Martin Reinecke's avatar
Martin Reinecke committed
80 81 82 83
        if covariance is None:
            self._op = SquaredNormOperator(self._domain).scale(0.5)
        else:
            self._op = QuadraticFormOperator(covariance.inverse)
Martin Reinecke's avatar
Martin Reinecke committed
84 85 86 87
        self._icov = None if covariance is None else covariance.inverse

    def _checkEquivalence(self, newdom):
        if self._domain is None:
88
            self._domain = DomainTuple.make(newdom)
Martin Reinecke's avatar
Martin Reinecke committed
89
        else:
90
            if self._domain != DomainTuple.make(newdom):
Martin Reinecke's avatar
Martin Reinecke committed
91 92 93
                raise ValueError("domain mismatch")

    def apply(self, x):
94
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
95
        residual = x if self._mean is None else x-self._mean
Philipp Arras's avatar
Changes  
Philipp Arras committed
96
        res = self._op(residual).real
97
        if not isinstance(x, Linearization) or not x.want_metric:
Martin Reinecke's avatar
Martin Reinecke committed
98 99 100 101 102 103 104 105
            return res
        metric = SandwichOperator.make(x.jac, self._icov)
        return res.add_metric(metric)


class PoissonianEnergy(EnergyOperator):
    def __init__(self, op, d):
        self._op, self._d = op, d
Martin Reinecke's avatar
Martin Reinecke committed
106
        self._domain = d.domain
Martin Reinecke's avatar
Martin Reinecke committed
107 108

    def apply(self, x):
109
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
110 111 112
        x = self._op(x)
        res = x.sum() - x.log().vdot(self._d)
        if not isinstance(x, Linearization):
Martin Reinecke's avatar
Martin Reinecke committed
113
            return Field.scalar(res)
114 115
        if not x.want_metric:
            return res
Martin Reinecke's avatar
Martin Reinecke committed
116 117 118
        metric = SandwichOperator.make(x.jac, makeOp(1./x.val))
        return res.add_metric(metric)

119

120 121 122 123 124 125
class InverseGammaLikelihood(EnergyOperator):
    def __init__(self, op, d):
        self._op, self._d = op, d
        self._domain = d.domain

    def apply(self, x):
126
        self._check_input(x)
127
        x = self._op(x)
Philipp Frank's avatar
Philipp Frank committed
128
        res = 0.5*(x.log().sum() + (1./x).vdot(self._d))
129 130
        if not isinstance(x, Linearization):
            return Field.scalar(res)
131 132
        if not x.want_metric:
            return res
133 134 135 136
        metric = SandwichOperator.make(x.jac, makeOp(0.5/(x.val**2)))
        return res.add_metric(metric)


Martin Reinecke's avatar
Martin Reinecke committed
137 138 139 140
class BernoulliEnergy(EnergyOperator):
    def __init__(self, p, d):
        self._p = p
        self._d = d
Martin Reinecke's avatar
Martin Reinecke committed
141
        self._domain = d.domain
Martin Reinecke's avatar
Martin Reinecke committed
142 143

    def apply(self, x):
144
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
145 146 147
        x = self._p(x)
        v = x.log().vdot(-self._d) - (1.-x).log().vdot(1.-self._d)
        if not isinstance(x, Linearization):
Martin Reinecke's avatar
Martin Reinecke committed
148
            return Field.scalar(v)
149 150
        if not x.want_metric:
            return v
Martin Reinecke's avatar
Martin Reinecke committed
151 152 153 154 155 156 157 158 159 160
        met = makeOp(1./(x.val*(1.-x.val)))
        met = SandwichOperator.make(x.jac, met)
        return v.add_metric(met)


class Hamiltonian(EnergyOperator):
    def __init__(self, lh, ic_samp=None):
        self._lh = lh
        self._prior = GaussianEnergy(domain=lh.domain)
        self._ic_samp = ic_samp
Martin Reinecke's avatar
Martin Reinecke committed
161
        self._domain = lh.domain
Martin Reinecke's avatar
Martin Reinecke committed
162 163

    def apply(self, x):
164
        self._check_input(x)
165 166
        if (self._ic_samp is None or not isinstance(x, Linearization) or
                not x.want_metric):
Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
167
            return self._lh(x)+self._prior(x)
Martin Reinecke's avatar
Martin Reinecke committed
168
        else:
169
            lhx, prx = self._lh(x), self._prior(x)
Martin Reinecke's avatar
Martin Reinecke committed
170 171 172 173 174 175 176 177 178 179 180 181 182
            mtr = SamplingEnabler(lhx.metric, prx.metric.inverse,
                                  self._ic_samp, prx.metric.inverse)
            return (lhx+prx).add_metric(mtr)


class SampledKullbachLeiblerDivergence(EnergyOperator):
    def __init__(self, h, res_samples):
        """
        # MR FIXME: does h have to be a Hamiltonian? Couldn't it be any energy?
        h: Hamiltonian
        N: Number of samples to be used
        """
        self._h = h
Martin Reinecke's avatar
Martin Reinecke committed
183
        self._domain = h.domain
Martin Reinecke's avatar
Martin Reinecke committed
184 185 186
        self._res_samples = tuple(res_samples)

    def apply(self, x):
187
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
188 189
        mymap = map(lambda v: self._h(x+v), self._res_samples)
        return utilities.my_sum(mymap) * (1./len(self._res_samples))