rg_space.py 11.1 KB
Newer Older
1
2
3
4
5
# NIFTy
# Copyright (C) 2017  Theo Steininger
#
# Author: Theo Steininger
#
6
7
8
9
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
10
#
11
12
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
13
14
15
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
16
# You should have received a copy of the GNU General Public License
17
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Marco Selig's avatar
Marco Selig committed
18
19
20
21
22
23
24
25
26
27

"""
    ..                  __   ____   __
    ..                /__/ /   _/ /  /_
    ..      __ ___    __  /  /_  /   _/  __   __
    ..    /   _   | /  / /   _/ /  /   /  / /  /
    ..   /  / /  / /  / /  /   /  /_  /  /_/  /
    ..  /__/ /__/ /__/ /__/    \___/  \___   /  rg
    ..                               /______/

Marco Selig's avatar
Marco Selig committed
28
    NIFTY submodule for regular Cartesian grids.
Marco Selig's avatar
Marco Selig committed
29
30
31

"""
from __future__ import division
Ultimanet's avatar
Ultimanet committed
32

Marco Selig's avatar
Marco Selig committed
33
import numpy as np
Ultimanet's avatar
Ultimanet committed
34

35
36
from d2o import distributed_data_object,\
                STRATEGIES as DISTRIBUTION_STRATEGIES
37

38
from nifty.spaces.space import Space
csongor's avatar
csongor committed
39

Marco Selig's avatar
Marco Selig committed
40

Theo Steininger's avatar
Theo Steininger committed
41
class RGSpace(Space):
Marco Selig's avatar
Marco Selig committed
42
43
44
45
46
47
48
49
50
51
52
    """
        ..      _____   _______
        ..    /   __/ /   _   /
        ..   /  /    /  /_/  /
        ..  /__/     \____  /  space class
        ..          /______/

        NIFTY subclass for spaces of regular Cartesian grids.

        Attributes
        ----------
Martin Reinecke's avatar
Martin Reinecke committed
53
        harmonic : bool
Marco Selig's avatar
Marco Selig committed
54
            Whether or not the grid represents a Fourier basis.
55
        zerocenter : {bool, numpy.ndarray}
Martin Reinecke's avatar
Martin Reinecke committed
56
            Whether the Fourier zero-mode is located in the center of the grid
57
58
59
            (or the center of each axis speparately) or not.
            MR FIXME: this also does something if the space is not harmonic!
        distances : {float, numpy.ndarray}
Martin Reinecke's avatar
Martin Reinecke committed
60
            Distance between two grid points along each axis (default: None).
Marco Selig's avatar
Marco Selig committed
61
62
    """

63
64
    # ---Overwritten properties and methods---

65
    def __init__(self, shape, zerocenter=False, distances=None,
Martin Reinecke's avatar
Martin Reinecke committed
66
                 harmonic=False):
Marco Selig's avatar
Marco Selig committed
67
        """
68
            Sets the attributes for an RGSpace class instance.
Marco Selig's avatar
Marco Selig committed
69
70
71

            Parameters
            ----------
Martin Reinecke's avatar
Martin Reinecke committed
72
            shape : {int, numpy.ndarray}
73
                Number of grid points or numbers of gridpoints along each axis.
Marco Selig's avatar
Marco Selig committed
74
75
76
            zerocenter : {bool, numpy.ndarray}, *optional*
                Whether the Fourier zero-mode is located in the center of the
                grid (or the center of each axis speparately) or not
77
                MR FIXME: this also does something if the space is not harmonic!
Ultimanet's avatar
Ultimanet committed
78
                (default: False).
Martin Reinecke's avatar
Martin Reinecke committed
79
            distances : {float, numpy.ndarray}, *optional*
Marco Selig's avatar
Marco Selig committed
80
81
                Distance between two grid points along each axis
                (default: None).
82
83
84
85
                If distances==None:
                    if harmonic==True, all distances will be set to 1
                    if harmonic==False, the distance along each axis will be
                      set to the inverse of the number of points along that axis
Martin Reinecke's avatar
Martin Reinecke committed
86
            harmonic : bool, *optional*
Marco Selig's avatar
Marco Selig committed
87
88
89
90
91
92
93
                Whether the space represents a Fourier or a position grid
                (default: False).

            Returns
            -------
            None
        """
94
95
        self._harmonic = bool(harmonic)

Martin Reinecke's avatar
Martin Reinecke committed
96
        super(RGSpace, self).__init__()
97

98
99
100
        self._shape = self._parse_shape(shape)
        self._distances = self._parse_distances(distances)
        self._zerocenter = self._parse_zerocenter(zerocenter)
Marco Selig's avatar
Marco Selig committed
101

102
103
    def hermitian_decomposition(self, x, axes=None,
                                preserve_gaussian_variance=False):
104
105
106
107
108
109
110
111
112
        # compute the hermitian part
        flipped_x = self._hermitianize_inverter(x, axes=axes)
        flipped_x = flipped_x.conjugate()
        # average x and flipped_x.
        hermitian_part = x + flipped_x
        hermitian_part /= 2.

        # use subtraction since it is faster than flipping another time
        anti_hermitian_part = (x-hermitian_part)/1j
113
114
115
116
117
118
119

        if preserve_gaussian_variance:
            hermitian_part, anti_hermitian_part = \
                self._hermitianize_correct_variance(hermitian_part,
                                                    anti_hermitian_part,
                                                    axes=axes)

120
121
        return (hermitian_part, anti_hermitian_part)

122
123
124
125
126
127
    def _hermitianize_correct_variance(self, hermitian_part,
                                       anti_hermitian_part, axes):
        # Correct the variance by multiplying sqrt(2)
        hermitian_part = hermitian_part * np.sqrt(2)
        anti_hermitian_part = anti_hermitian_part * np.sqrt(2)

Martin Reinecke's avatar
Martin Reinecke committed
128
        # The fixed points of the point inversion must not be averaged.
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
        # Hence one must divide out the sqrt(2) again
        # -> Get the middle index of the array
        mid_index = np.array(hermitian_part.shape, dtype=np.int) // 2
        dimensions = mid_index.size
        # Use ndindex to iterate over all combinations of zeros and the
        # mid_index in order to correct all fixed points.
        if axes is None:
            axes = xrange(dimensions)

        ndlist = [2 if i in axes else 1 for i in xrange(dimensions)]
        ndlist = tuple(ndlist)
        for i in np.ndindex(ndlist):
            temp_index = tuple(i * mid_index)
            hermitian_part[temp_index] /= np.sqrt(2)
            anti_hermitian_part[temp_index] /= np.sqrt(2)
        return hermitian_part, anti_hermitian_part

146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
    def _hermitianize_inverter(self, x, axes):
        # calculate the number of dimensions the input array has
        dimensions = len(x.shape)
        # prepare the slicing object which will be used for mirroring
        slice_primitive = [slice(None), ] * dimensions
        # copy the input data
        y = x.copy()

        if axes is None:
            axes = xrange(dimensions)

        # flip in the desired directions
        for i in axes:
            slice_picker = slice_primitive[:]
            slice_picker[i] = slice(1, None, None)
            slice_picker = tuple(slice_picker)

            slice_inverter = slice_primitive[:]
            slice_inverter[i] = slice(None, 0, -1)
            slice_inverter = tuple(slice_inverter)

            try:
                y.set_data(to_key=slice_picker, data=y,
                           from_key=slice_inverter)
            except(AttributeError):
                y[slice_picker] = y[slice_inverter]
        return y

174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
    # ---Mandatory properties and methods---

    @property
    def harmonic(self):
        return self._harmonic

    @property
    def shape(self):
        return self._shape

    @property
    def dim(self):
        return reduce(lambda x, y: x*y, self.shape)

    @property
    def total_volume(self):
        return self.dim * reduce(lambda x, y: x*y, self.distances)

    def copy(self):
        return self.__class__(shape=self.shape,
                              zerocenter=self.zerocenter,
                              distances=self.distances,
Martin Reinecke's avatar
Martin Reinecke committed
196
                              harmonic=self.harmonic)
197
198
199
200
201
202
203
204
205
206

    def weight(self, x, power=1, axes=None, inplace=False):
        weight = reduce(lambda x, y: x*y, self.distances)**power
        if inplace:
            x *= weight
            result_x = x
        else:
            result_x = x*weight
        return result_x

207
    def get_distance_array(self, distribution_strategy):
theos's avatar
theos committed
208
209
210
        """
            Calculates an n-dimensional array with its entries being the
            lengths of the k-vectors from the zero point of the grid.
211
212
            MR FIXME: Since this is about k-vectors, it might make sense to
            throw NotImplementedError if harmonic==False.
theos's avatar
theos committed
213
214
215
216
217
218
219
220
221
222
223
224

            Parameters
            ----------
            None : All information is taken from the parent object.

            Returns
            -------
            nkdict : distributed_data_object
        """
        shape = self.shape
        # prepare the distributed_data_object
        nkdict = distributed_data_object(
Martin Reinecke's avatar
Martin Reinecke committed
225
                        global_shape=shape, dtype=np.float64,
theos's avatar
theos committed
226
227
228
229
230
231
232
233
234
                        distribution_strategy=distribution_strategy)

        if distribution_strategy in DISTRIBUTION_STRATEGIES['slicing']:
            # get the node's individual slice of the first dimension
            slice_of_first_dimension = slice(
                                    *nkdict.distributor.local_slice[0:2])
        elif distribution_strategy in DISTRIBUTION_STRATEGIES['not']:
            slice_of_first_dimension = slice(0, shape[0])
        else:
235
236
            raise ValueError(
                "Unsupported distribution strategy")
theos's avatar
theos committed
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
        dists = self._distance_array_helper(slice_of_first_dimension)
        nkdict.set_local_data(dists)

        return nkdict

    def _distance_array_helper(self, slice_of_first_dimension):
        dk = self.distances
        shape = self.shape

        inds = []
        for a in shape:
            inds += [slice(0, a)]

        cords = np.ogrid[inds]

Theo Steininger's avatar
Theo Steininger committed
252
        dists = ((cords[0] - shape[0]//2)*dk[0])**2
theos's avatar
theos committed
253
        # apply zerocenterQ shift
254
255
        if not self.zerocenter[0]:
            dists = np.fft.ifftshift(dists)
theos's avatar
theos committed
256
257
258
259
        # only save the individual slice
        dists = dists[slice_of_first_dimension]
        for ii in range(1, len(shape)):
            temp = ((cords[ii] - shape[ii] // 2) * dk[ii])**2
260
            if not self.zerocenter[ii]:
Martin Reinecke's avatar
Martin Reinecke committed
261
                temp = np.fft.ifftshift(temp)
theos's avatar
theos committed
262
263
264
265
            dists = dists + temp
        dists = np.sqrt(dists)
        return dists

266
    def get_fft_smoothing_kernel_function(self, sigma):
theos's avatar
theos committed
267
268
269
270
271
        if sigma is None:
            sigma = np.sqrt(2) * np.max(self.distances)

        return lambda x: np.exp(-2. * np.pi**2 * x**2 * sigma**2)

272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
    # ---Added properties and methods---

    @property
    def distances(self):
        return self._distances

    @property
    def zerocenter(self):
        return self._zerocenter

    def _parse_shape(self, shape):
        if np.isscalar(shape):
            shape = (shape,)
        temp = np.empty(len(shape), dtype=np.int)
        temp[:] = shape
        return tuple(temp)

    def _parse_distances(self, distances):
        if distances is None:
            if self.harmonic:
Martin Reinecke's avatar
Martin Reinecke committed
292
                temp = np.ones_like(self.shape, dtype=np.float64)
293
            else:
Martin Reinecke's avatar
Martin Reinecke committed
294
                temp = 1 / np.array(self.shape, dtype=np.float64)
295
        else:
Martin Reinecke's avatar
Martin Reinecke committed
296
            temp = np.empty(len(self.shape), dtype=np.float64)
297
298
299
300
301
302
303
            temp[:] = distances
        return tuple(temp)

    def _parse_zerocenter(self, zerocenter):
        temp = np.empty(len(self.shape), dtype=bool)
        temp[:] = zerocenter
        return tuple(temp)
304
305
306
307

    # ---Serialization---

    def _to_hdf5(self, hdf5_group):
Jait Dixit's avatar
Jait Dixit committed
308
309
310
        hdf5_group['shape'] = self.shape
        hdf5_group['zerocenter'] = self.zerocenter
        hdf5_group['distances'] = self.distances
311
        hdf5_group['harmonic'] = self.harmonic
Jait Dixit's avatar
Jait Dixit committed
312

313
314
315
        return None

    @classmethod
Theo Steininger's avatar
Theo Steininger committed
316
    def _from_hdf5(cls, hdf5_group, repository):
317
        result = cls(
Jait Dixit's avatar
Jait Dixit committed
318
319
320
            shape=hdf5_group['shape'][:],
            zerocenter=hdf5_group['zerocenter'][:],
            distances=hdf5_group['distances'][:],
321
            harmonic=hdf5_group['harmonic'][()],
Jait Dixit's avatar
Jait Dixit committed
322
            )
323
        return result