correlated_fields.py 15.9 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1 2 3 4 5 6 7 8 9 10 11 12 13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
14
# Copyright(C) 2013-2019 Max-Planck-Society
Philipp Arras's avatar
Philipp Arras committed
15
# Authors: Philipp Frank, Philipp Arras
Martin Reinecke's avatar
Martin Reinecke committed
16
#
17
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
Philipp Arras's avatar
Philipp Arras committed
18

Philipp Arras's avatar
Philipp Arras committed
19
import numpy as np
20

Philipp Arras's avatar
Philipp Arras committed
21
from ..domain_tuple import DomainTuple
Philipp Arras's avatar
Philipp Arras committed
22 23
from ..domains.power_space import PowerSpace
from ..domains.unstructured_domain import UnstructuredDomain
24
from ..field import Field
Philipp Arras's avatar
Philipp Arras committed
25
from ..operators.adder import Adder
26
from ..operators.contraction_operator import ContractionOperator
Philipp Arras's avatar
Philipp Arras committed
27
from ..operators.distributors import PowerDistributor
Philipp Arras's avatar
Philipp Arras committed
28
from ..operators.endomorphic_operator import EndomorphicOperator
Martin Reinecke's avatar
Martin Reinecke committed
29
from ..operators.harmonic_operators import HarmonicTransformOperator
Philipp Arras's avatar
Philipp Arras committed
30
from ..operators.linear_operator import LinearOperator
Philipp Arras's avatar
Philipp Arras committed
31 32
from ..operators.operator import Operator
from ..operators.simple_linear_operators import VdotOperator, ducktape
Philipp Arras's avatar
Philipp Arras committed
33
from ..operators.value_inserter import ValueInserter
34
from ..probing import StatCalculator
Philipp Arras's avatar
Philipp Arras committed
35
from ..sugar import from_global_data, full, makeDomain
36

Philipp Arras's avatar
Philipp Arras committed
37

38 39
def _lognormal_moments(mean, sig):
    mean, sig = float(mean), float(sig)
Philipp Arras's avatar
Philipp Arras committed
40 41 42
    assert sig > 0
    logsig = np.sqrt(np.log((sig/mean)**2 + 1))
    logmean = np.log(mean) - logsig**2/2
43 44
    return logmean, logsig

Philipp Arras's avatar
Philipp Arras committed
45

Philipp Arras's avatar
Philipp Arras committed
46 47 48 49 50
def _normal(mean, sig, key):
    return Adder(Field.scalar(mean)) @ (
        sig*ducktape(DomainTuple.scalar_domain(), None, key))


Philipp Arras's avatar
Philipp Arras committed
51
def _log_k_lengths(pspace):
Philipp Arras's avatar
Philipp Arras committed
52
    """Log(k_lengths) without zeromode"""
Philipp Arras's avatar
Philipp Arras committed
53 54 55
    return np.log(pspace.k_lengths[1:])


Philipp Arras's avatar
Philipp Arras committed
56
def _relative_log_k_lengths(power_space):
Philipp Arras's avatar
Philipp Arras committed
57 58
    """Log-distance to first bin
    logkl.shape==power_space.shape, logkl[0]=logkl[1]=0"""
Philipp Arras's avatar
Philipp Arras committed
59 60 61 62 63 64
    power_space = DomainTuple.make(power_space)
    assert isinstance(power_space[0], PowerSpace)
    assert len(power_space) == 1
    logkl = _log_k_lengths(power_space[0])
    assert logkl.shape[0] == power_space[0].shape[0] - 1
    logkl -= logkl[0]
Philipp Arras's avatar
Philipp Arras committed
65
    return np.insert(logkl, 0, 0)
Philipp Arras's avatar
Philipp Arras committed
66 67


Philipp Arras's avatar
Philipp Arras committed
68 69 70 71 72 73 74 75
def _log_vol(power_space):
    power_space = DomainTuple.make(power_space)
    assert isinstance(power_space[0], PowerSpace)
    assert len(power_space) == 1
    logk_lengths = _log_k_lengths(power_space[0])
    return logk_lengths[1:] - logk_lengths[:-1]


Philipp Arras's avatar
Philipp Arras committed
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
class _LognormalMomentMatching(Operator):
    def __init__(self, mean, sig, key):
        key = str(key)
        logmean, logsig = _lognormal_moments(mean, sig)
        self._mean = mean
        self._sig = sig
        op = _normal(logmean, logsig, key).exp()
        self._domain, self._target = op.domain, op.target
        self.apply = op.apply

    @property
    def mean(self):
        return self._mean

    @property
    def std(self):
        return self._sig


Philipp Frank's avatar
Philipp Frank committed
95
class _SlopeRemover(EndomorphicOperator):
Philipp Arras's avatar
Philipp Arras committed
96
    def __init__(self, domain):
Philipp Frank's avatar
Philipp Frank committed
97
        self._domain = makeDomain(domain)
Philipp Arras's avatar
Philipp Arras committed
98 99
        assert len(self._domain) == 1
        assert isinstance(self._domain[0], PowerSpace)
Philipp Arras's avatar
Philipp Arras committed
100
        logkl = _relative_log_k_lengths(self._domain)
101
        self._sc = logkl/float(logkl[-1])
Philipp Frank's avatar
Philipp Frank committed
102
        self._capability = self.TIMES | self.ADJOINT_TIMES
Philipp Arras's avatar
Philipp Arras committed
103

104 105
    def apply(self, x, mode):
        self._check_input(x, mode)
Philipp Frank's avatar
Philipp Frank committed
106 107
        x = x.to_global_data()
        if mode == self.TIMES:
108
            res = x - x[-1]*self._sc
Philipp Frank's avatar
Philipp Frank committed
109
        else:
110
            res = np.zeros(x.shape, dtype=x.dtype)
Philipp Frank's avatar
Philipp Frank committed
111 112
            res += x
            res[-1] -= (x*self._sc).sum()
113
        return from_global_data(self._tgt(mode), res)
Philipp Frank's avatar
Philipp Frank committed
114

115

Philipp Arras's avatar
Philipp Arras committed
116 117 118
class _TwoLogIntegrations(LinearOperator):
    def __init__(self, target):
        self._target = makeDomain(target)
Philipp Arras's avatar
Philipp Arras committed
119 120
        assert len(self._target) == 1
        assert isinstance(self._target[0], PowerSpace)
Philipp Arras's avatar
Philipp Arras committed
121 122 123 124 125
        self._domain = makeDomain(
            UnstructuredDomain((2, self.target.shape[0] - 2)))
        self._capability = self.TIMES | self.ADJOINT_TIMES
        if not isinstance(self._target[0], PowerSpace):
            raise TypeError
Philipp Arras's avatar
Philipp Arras committed
126
        self._log_vol = _log_vol(self._target[0])
Philipp Arras's avatar
Philipp Arras committed
127 128 129 130 131 132

    def apply(self, x, mode):
        self._check_input(x, mode)
        if mode == self.TIMES:
            x = x.to_global_data()
            res = np.empty(self._target.shape)
Philipp Arras's avatar
Philipp Arras committed
133
            res[0] = res[1] = 0
Philipp Arras's avatar
Philipp Arras committed
134
            res[2:] = np.cumsum(x[1])
Philipp Arras's avatar
Philipp Arras committed
135
            res[2:] = (res[2:] + res[1:-1])/2*self._log_vol + x[0]
Philipp Arras's avatar
Philipp Arras committed
136 137 138 139 140 141 142
            res[2:] = np.cumsum(res[2:])
            return from_global_data(self._target, res)
        else:
            x = x.to_global_data_rw()
            res = np.zeros(self._domain.shape)
            x[2:] = np.cumsum(x[2:][::-1])[::-1]
            res[0] += x[2:]
Philipp Arras's avatar
Philipp Arras committed
143
            x[2:] *= self._log_vol/2.
144 145
            x[1:-1] += x[2:]
            res[1] += np.cumsum(x[2:][::-1])[::-1]
Philipp Arras's avatar
Philipp Arras committed
146 147 148 149 150 151
            return from_global_data(self._domain, res)


class _Normalization(Operator):
    def __init__(self, domain):
        self._domain = self._target = makeDomain(domain)
Philipp Arras's avatar
Philipp Arras committed
152
        assert len(self._domain) == 1
Philipp Arras's avatar
Philipp Arras committed
153
        assert isinstance(self._domain[0], PowerSpace)
Philipp Arras's avatar
Philipp Arras committed
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
        hspace = self._domain[0].harmonic_partner
        pd = PowerDistributor(hspace, power_space=self._domain[0])
        cst = pd.adjoint(full(pd.target, 1.)).to_global_data_rw()
        cst[0] = 0
        self._cst = from_global_data(self._domain, cst)
        self._specsum = _SpecialSum(self._domain)

    def apply(self, x):
        self._check_input(x)
        amp = x.exp()
        spec = (2*x).exp()
        # FIXME This normalizes also the zeromode which is supposed to be left
        # untouched by this operator
        return self._specsum(self._cst*spec)**(-0.5)*amp


class _SpecialSum(EndomorphicOperator):
    def __init__(self, domain):
        self._domain = makeDomain(domain)
Philipp Arras's avatar
Philipp Arras committed
173
        assert len(self._domain) == 1
Philipp Arras's avatar
Philipp Arras committed
174 175 176 177 178 179 180
        self._capability = self.TIMES | self.ADJOINT_TIMES

    def apply(self, x, mode):
        self._check_input(x, mode)
        return full(self._tgt(mode), x.sum())


181 182 183
class _Amplitude(Operator):
    def __init__(self, target, fluctuations, flexibility, asperity,
                 loglogavgslope, key):
Philipp Arras's avatar
Philipp Arras committed
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
        """
        fluctuations > 0
        flexibility > 0
        asperity > 0
        loglogavgslope probably negative
        """
        assert isinstance(fluctuations, Operator)
        assert isinstance(flexibility, Operator)
        assert isinstance(asperity, Operator)
        assert isinstance(loglogavgslope, Operator)
        target = makeDomain(target)
        assert len(target) == 1
        assert isinstance(target[0], PowerSpace)

        twolog = _TwoLogIntegrations(target)
Philipp Arras's avatar
Philipp Arras committed
199 200 201 202 203 204 205
        dom = twolog.domain
        shp = dom.shape
        totvol = target[0].harmonic_partner.get_default_codomain().total_volume

        # Prepare constant fields
        foo = np.zeros(shp)
        foo[0] = foo[1] = np.sqrt(_log_vol(target))
Philipp Arras's avatar
Philipp Arras committed
206
        vflex = from_global_data(dom, foo)
Philipp Arras's avatar
Philipp Arras committed
207 208 209

        foo = np.zeros(shp, dtype=np.float64)
        foo[0] += 1
Philipp Arras's avatar
Philipp Arras committed
210
        vasp = from_global_data(dom, foo)
Philipp Arras's avatar
Philipp Arras committed
211 212 213 214 215

        foo = np.ones(shp)
        foo[0] = _log_vol(target)**2/12.
        shift = from_global_data(dom, foo)

Philipp Arras's avatar
Philipp Arras committed
216
        vslope = from_global_data(target, _relative_log_k_lengths(target))
Philipp Arras's avatar
Philipp Arras committed
217

Philipp Frank's avatar
fixup  
Philipp Frank committed
218
        foo, bar = [np.zeros(target.shape) for _ in range(2)]
Philipp Arras's avatar
Philipp Arras committed
219 220
        bar[1:] = foo[0] = totvol
        vol0, vol1 = [from_global_data(target, aa) for aa in (foo, bar)]
Philipp Arras's avatar
Philipp Arras committed
221 222
        # End prepare constant fields

Philipp Arras's avatar
Philipp Arras committed
223 224 225
        slope = VdotOperator(vslope).adjoint @ loglogavgslope
        sig_flex = VdotOperator(vflex).adjoint @ flexibility
        sig_asp = VdotOperator(vasp).adjoint @ asperity
Philipp Arras's avatar
Philipp Arras committed
226 227 228
        sig_fluc = VdotOperator(vol1).adjoint @ fluctuations

        xi = ducktape(dom, None, key)
Philipp Arras's avatar
Philipp Arras committed
229
        sigma = sig_flex*(Adder(shift) @ sig_asp).sqrt()
Philipp Arras's avatar
Philipp Arras committed
230 231 232 233
        smooth = _SlopeRemover(target) @ twolog @ (sigma*xi)
        op = _Normalization(target) @ (slope + smooth)
        op = Adder(vol0) @ (sig_fluc*op)

Philipp Arras's avatar
Philipp Arras committed
234
        self.apply = op.apply
235
        self.fluctuation_amplitude = fluctuations
Philipp Arras's avatar
Philipp Arras committed
236
        self._domain, self._target = op.domain, op.target
Philipp Arras's avatar
Philipp Arras committed
237

238 239 240 241

class CorrelatedFieldMaker:
    def __init__(self):
        self._a = []
242
        self._azm = None
243
        self._position_spaces = []
244 245

    def add_fluctuations(self,
246
                         position_space,
247 248 249 250 251 252 253 254
                         fluctuations_mean,
                         fluctuations_stddev,
                         flexibility_mean,
                         flexibility_stddev,
                         asperity_mean,
                         asperity_stddev,
                         loglogavgslope_mean,
                         loglogavgslope_stddev,
255
                         prefix='',
Philipp Arras's avatar
Philipp Arras committed
256
                         index=None):
Philipp Arras's avatar
Philipp Arras committed
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
        fluctuations_mean = float(fluctuations_mean)
        fluctuations_stddev = float(fluctuations_stddev)
        flexibility_mean = float(flexibility_mean)
        flexibility_stddev = float(flexibility_stddev)
        asperity_mean = float(asperity_mean)
        asperity_stddev = float(asperity_stddev)
        loglogavgslope_mean = float(loglogavgslope_mean)
        loglogavgslope_stddev = float(loglogavgslope_stddev)
        prefix = str(prefix)
        assert fluctuations_stddev > 0
        assert fluctuations_mean > 0
        assert flexibility_stddev > 0
        assert flexibility_mean > 0
        assert asperity_stddev > 0
        assert asperity_mean > 0
        assert loglogavgslope_stddev > 0

Philipp Arras's avatar
Philipp Arras committed
274 275 276 277 278 279 280
        fluct = _LognormalMomentMatching(fluctuations_mean,
                                         fluctuations_stddev,
                                         prefix + 'fluctuations')
        flex = _LognormalMomentMatching(flexibility_mean, flexibility_stddev,
                                        prefix + 'flexibility')
        asp = _LognormalMomentMatching(asperity_mean, asperity_stddev,
                                       prefix + 'asperity')
281
        avgsl = _normal(loglogavgslope_mean, loglogavgslope_stddev,
Philipp Arras's avatar
Philipp Arras committed
282
                        prefix + 'loglogavgslope')
283 284
        amp = _Amplitude(PowerSpace(position_space.get_default_codomain()),
                         fluct, flex, asp, avgsl, prefix + 'spectrum')
285 286
        if index is not None:
            self._a.insert(index, amp)
287
            self._position_spaces.insert(index, position_space)
288 289
        else:
            self._a.append(amp)
290
            self._position_spaces.append(position_space)
291 292 293

    def finalize_from_op(self, zeromode, prefix=''):
        assert isinstance(zeromode, Operator)
294
        self._azm = zeromode
295 296
        hspace = makeDomain([dd.get_default_codomain()
                             for dd in self._position_spaces])
297 298 299 300 301 302 303
        foo = np.ones(hspace.shape)
        zeroind = len(hspace.shape)*(0,)
        foo[zeroind] = 0
        azm = Adder(from_global_data(hspace, foo)) @ ValueInserter(
            hspace, zeroind) @ zeromode

        n_amplitudes = len(self._a)
304 305
        ht = HarmonicTransformOperator(hspace, self._position_spaces[0],
                                       space=0)
306
        for i in range(1, n_amplitudes):
307 308 309
            ht = (HarmonicTransformOperator(ht.target,
                                            self._position_spaces[i],
                                            space=i) @ ht)
310 311 312 313 314 315 316 317 318 319 320

        pd = PowerDistributor(hspace, self._a[0].target[0], 0)
        for i in range(1, n_amplitudes):
            foo = PowerDistributor(pd.domain, self._a[i].target[0], space=i)
            pd = pd @ foo

        spaces = tuple(range(n_amplitudes))
        a = ContractionOperator(pd.domain, spaces[1:]).adjoint @ self._a[0]
        for i in range(1, n_amplitudes):
            co = ContractionOperator(pd.domain, spaces[:i] + spaces[(i + 1):])
            a = a*(co.adjoint @ self._a[i])
Philipp Arras's avatar
Philipp Arras committed
321

322
        return ht(azm*(pd @ a)*ducktape(hspace, None, prefix + 'xi'))
Philipp Arras's avatar
Philipp Arras committed
323 324 325 326

    def finalize(self,
                 offset_amplitude_mean,
                 offset_amplitude_stddev,
327
                 prefix='',
Philipp Arras's avatar
Philipp Arras committed
328 329 330 331 332 333 334 335 336
                 offset=None):
        """
        offset vs zeromode: volume factor
        """
        offset_amplitude_stddev = float(offset_amplitude_stddev)
        offset_amplitude_mean = float(offset_amplitude_mean)
        assert offset_amplitude_stddev > 0
        assert offset_amplitude_mean > 0
        if offset is not None:
337
            raise NotImplementedError
Philipp Arras's avatar
Philipp Arras committed
338
            offset = float(offset)
Philipp Arras's avatar
Philipp Arras committed
339 340 341
        azm = _LognormalMomentMatching(offset_amplitude_mean,
                                       offset_amplitude_stddev,
                                       prefix + 'zeromode')
342
        return self.finalize_from_op(azm, prefix)
Philipp Arras's avatar
Philipp Arras committed
343 344 345

    @property
    def amplitudes(self):
346
        return self._a
347

348 349 350 351 352 353 354
    @property
    def amplitude_total_offset(self):
        return self._azm

    @property
    def total_fluctuation(self):
        if len(self._a) == 0:
Philipp Arras's avatar
Philipp Arras committed
355
            raise NotImplementedError
356 357 358 359 360
        if len(self._a) == 1:
            return self._a[0].fluctuation_amplitude
        q = 1.
        for a in self._a:
            fl = a.fluctuation_amplitude
Philipp Arras's avatar
Philipp Arras committed
361 362
            q = q*(Adder(full(fl.target, 1.)) @ fl**2)
        return (Adder(full(q.target, -1.)) @ q).sqrt()
363

Philipp Arras's avatar
Philipp Arras committed
364
    def slice_fluctuation(self, space):
365
        if len(self._a) == 0:
Philipp Arras's avatar
Philipp Arras committed
366
            raise NotImplementedError
367 368 369 370 371 372 373
        assert space < len(self._a)
        if len(self._a) == 1:
            return self._a[0].fluctuation_amplitude
        q = 1.
        for j in range(len(self._a)):
            fl = self._a[j].fluctuation_amplitude
            if j == space:
Philipp Arras's avatar
Philipp Arras committed
374
                q = q*fl**2
375
            else:
Philipp Arras's avatar
Philipp Arras committed
376
                q = q*(Adder(full(fl.target, 1.)) @ fl**2)
377
        return q.sqrt()
Philipp Arras's avatar
Philipp Arras committed
378 379

    def average_fluctuation(self, space):
380
        if len(self._a) == 0:
Philipp Arras's avatar
Philipp Arras committed
381
            raise NotImplementedError
382 383 384 385 386
        assert space < len(self._a)
        if len(self._a) == 1:
            return self._a[0].fluctuation_amplitude
        return self._a[space].fluctuation_amplitude

Philipp Arras's avatar
Philipp Arras committed
387
    def average_fluctuation_realized(self, samples, space):
388 389 390 391
        ldom = len(samples[0].domain)
        assert space < ldom
        if ldom == 1:
            return self.total_fluctuation_realized(samples)
Philipp Arras's avatar
Philipp Arras committed
392
        spaces = ()
393 394 395 396 397 398
        for i in range(ldom):
            if i != space:
                spaces += (i,)
        res = 0.
        for s in samples:
            r = s.mean(spaces)
Philipp Arras's avatar
Philipp Arras committed
399
            res = res + (r - r.mean())**2
400 401
        res = res/len(samples)
        return np.sqrt(res.mean())
Philipp Arras's avatar
Philipp Arras committed
402 403

    def slice_fluctuation_realized(self, samples, space):
404 405 406 407 408 409 410 411 412 413 414
        ldom = len(samples[0].domain)
        assert space < ldom
        if ldom == 1:
            return self.total_fluctuation_realized(samples)
        res1 = 0.
        res2 = 0.
        for s in samples:
            res1 = res1 + s**2
            res2 = res2 + s.mean(space)**2
        res1 = res1/len(samples)
        res2 = res2/len(samples)
Philipp Arras's avatar
Philipp Arras committed
415
        res = res1.mean() - res2.mean()
416 417
        return np.sqrt(res)

Philipp Arras's avatar
Philipp Arras committed
418
    def moment_slice_to_average(self, fluctuations_slice_mean, nsamples=1000):
419 420 421 422 423
        fluctuations_slice_mean = float(fluctuations_slice_mean)
        assert fluctuations_slice_mean > 0
        scm = 1.
        for a in self._a:
            m, std = a.fluctuation_amplitude.mean, a.fluctuation_amplitude.std
Philipp Arras's avatar
Philipp Arras committed
424 425
            mu, sig = _lognormal_moments(m, std)
            flm = np.exp(mu + sig*np.random.normal(size=nsamples))
426 427
            scm *= flm**2 + 1.
        scm = np.mean(np.sqrt(scm))
Philipp Arras's avatar
Philipp Arras committed
428
        return fluctuations_slice_mean/scm
Philipp Arras's avatar
Philipp Arras committed
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450

    @staticmethod
    def offset_amplitude_realized(samples):
        res = 0.
        for s in samples:
            res += s.mean()**2
        return np.sqrt(res/len(samples))

    @staticmethod
    def total_fluctuation_realized(samples):
        res = 0.
        for s in samples:
            res = res + (s - s.mean())**2
        res = res/len(samples)
        return np.sqrt(res.mean())

    @staticmethod
    def stats(op, samples):
        sc = StatCalculator()
        for s in samples:
            sc.add(op(s.extract(op.domain)))
        return sc.mean.to_global_data(), sc.var.sqrt().to_global_data()