energy_operators.py 15.6 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
14
# Copyright(C) 2013-2019 Max-Planck-Society
Martin Reinecke's avatar
Martin Reinecke committed
15
#
16
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
Martin Reinecke's avatar
Martin Reinecke committed
17

Philipp Arras's avatar
Philipp Arras committed
18
19
import numpy as np

Philipp Arras's avatar
Philipp Arras committed
20
from .. import utilities
Martin Reinecke's avatar
Martin Reinecke committed
21
from ..domain_tuple import DomainTuple
22
from ..multi_domain import MultiDomain
Philipp Arras's avatar
Philipp Arras committed
23
from ..field import Field
24
from ..multi_field import MultiField
Philipp Arras's avatar
Philipp Arras committed
25
from ..linearization import Linearization
Philipp Arras's avatar
Philipp Arras committed
26
27
from ..sugar import makeDomain, makeOp
from .linear_operator import LinearOperator
Martin Reinecke's avatar
Martin Reinecke committed
28
from .operator import Operator
Martin Reinecke's avatar
fix    
Martin Reinecke committed
29
from .sampling_enabler import SamplingEnabler
Philipp Arras's avatar
Philipp Arras committed
30
from .sandwich_operator import SandwichOperator
31
from .scaling_operator import ScalingOperator
32
from .simple_linear_operators import VdotOperator, FieldAdapter
Martin Reinecke's avatar
Martin Reinecke committed
33
34
35


class EnergyOperator(Operator):
Philipp Arras's avatar
Philipp Arras committed
36
    """Operator which has a scalar domain as target domain.
37

Martin Reinecke's avatar
Martin Reinecke committed
38
    It is intended as an objective function for field inference.
39

Philipp Arras's avatar
Philipp Arras committed
40
41
42
    Examples
    --------
     - Information Hamiltonian, i.e. negative-log-probabilities.
Martin Reinecke's avatar
Martin Reinecke committed
43
     - Gibbs free energy, i.e. an averaged Hamiltonian, aka Kullback-Leibler
Philipp Arras's avatar
Philipp Arras committed
44
       divergence.
45
    """
Martin Reinecke's avatar
Martin Reinecke committed
46
47
48
    _target = DomainTuple.scalar_domain()


49
50
class Squared2NormOperator(EnergyOperator):
    """Computes the square of the L2-norm of the output of an operator.
51

Philipp Arras's avatar
Philipp Arras committed
52
53
54
    Parameters
    ----------
    domain : Domain, DomainTuple or tuple of Domain
55
        Domain of the operator in which the L2-norm shall be computed.
Martin Reinecke's avatar
Martin Reinecke committed
56
    """
Philipp Arras's avatar
Philipp Arras committed
57

Martin Reinecke's avatar
Martin Reinecke committed
58
59
60
61
    def __init__(self, domain):
        self._domain = domain

    def apply(self, x):
62
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
63
        if isinstance(x, Linearization):
Martin Reinecke's avatar
Martin Reinecke committed
64
            val = Field.scalar(x.val.vdot(x.val))
Martin Reinecke's avatar
Martin Reinecke committed
65
            jac = VdotOperator(2*x.val)(x.jac)
66
            return x.new(val, jac)
Martin Reinecke's avatar
Martin Reinecke committed
67
        return Field.scalar(x.vdot(x))
Martin Reinecke's avatar
Martin Reinecke committed
68

Martin Reinecke's avatar
Martin Reinecke committed
69

Martin Reinecke's avatar
Martin Reinecke committed
70
class QuadraticFormOperator(EnergyOperator):
Philipp Arras's avatar
Philipp Arras committed
71
    """Computes the L2-norm of a Field or MultiField with respect to a
72
    specific kernel given by `endo`.
Philipp Arras's avatar
Philipp Arras committed
73
74
75

    .. math ::
        E(f) = \\frac12 f^\\dagger \\text{endo}(f)
76
77
78

    Parameters
    ----------
Philipp Arras's avatar
Philipp Arras committed
79
    endo : EndomorphicOperator
80
         Kernel of the quadratic form
Martin Reinecke's avatar
Martin Reinecke committed
81
    """
Philipp Arras's avatar
Philipp Arras committed
82
83

    def __init__(self, endo):
Martin Reinecke's avatar
Martin Reinecke committed
84
        from .endomorphic_operator import EndomorphicOperator
Philipp Arras's avatar
Philipp Arras committed
85
        if not isinstance(endo, EndomorphicOperator):
Martin Reinecke's avatar
Martin Reinecke committed
86
            raise TypeError("op must be an EndomorphicOperator")
Philipp Arras's avatar
Philipp Arras committed
87
88
        self._op = endo
        self._domain = endo.domain
Martin Reinecke's avatar
Martin Reinecke committed
89
90

    def apply(self, x):
91
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
92
        if isinstance(x, Linearization):
Martin Reinecke's avatar
Martin Reinecke committed
93
94
            t1 = self._op(x.val)
            jac = VdotOperator(t1)(x.jac)
Martin Reinecke's avatar
Martin Reinecke committed
95
            val = Field.scalar(0.5*x.val.vdot(t1))
96
            return x.new(val, jac)
Martin Reinecke's avatar
Martin Reinecke committed
97
        return Field.scalar(0.5*x.vdot(self._op(x)))
Martin Reinecke's avatar
Martin Reinecke committed
98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
class VariableCovarianceGaussianEnergy(EnergyOperator):
    """Computes a negative-log Gaussian with unknown covariance.

    Represents up to constants in :math:`m`:

    .. math ::
        E(f) = - \\log G(s, D) = 0.5 (s)^\\dagger D^{-1} (s),

    an information energy for a Gaussian distribution with residual s and
    covariance D.

    Parameters
    ----------
    residual : key
        residual of the Gaussian. 
    inverse_covariance : key
        Inverse covariance of the Gaussian. 
    domain : Domain, DomainTuple, tuple of Domain
        Operator domain. By default it is inferred from `mean` or
        `covariance` if specified

    """

    def __init__(self, domain, residual, inverse_covariance):
        self._residual = residual
        self._icov = inverse_covariance
        self._domain = MultiDomain.make({self._residual:domain,
            self._icov:domain})
        self._singledom = domain

    def apply(self, x):
        self._check_input(x)
        lin = isinstance(x, Linearization)
        xval = x.val if lin else x
        res = .5*xval[self._residual].vdot(xval[self._residual]*xval[self._icov])\
                - .5*xval[self._icov].log().sum()
        if not lin:
            return res
        FA_res = FieldAdapter(self._singledom, self._residual)
        FA_sig = FieldAdapter(self._singledom, self._icov)
        jac_res = xval[self._residual]*xval[self._icov]
        jac_res = VdotOperator(jac_res)(FA_res)
        jac_sig = .5*(xval[self._residual].absolute()**2)
        jac_sig = VdotOperator(jac_sig)(FA_sig)
        jac_sig = jac_sig - VdotOperator(1./xval[self._residual])(FA_sig)
        jac = (jac_sig + jac_res)(x.jac)
        res = x.new(res, jac)
        if not x.want_metric:
            return res
        mf = {self._residual:xval[self._icov],
                self._icov:.5*xval[self._icov]**(-2)}
        mf = MultiField.from_dict(mf)
        metric = makeOp(mf)
        metric = SandwichOperator(x.jac, metric)
        return res.add_metric(metric)


Martin Reinecke's avatar
Martin Reinecke committed
156
157

class GaussianEnergy(EnergyOperator):
Philipp Arras's avatar
Docs    
Philipp Arras committed
158
    """Computes a negative-log Gaussian.
159

Philipp Arras's avatar
Philipp Arras committed
160
    Represents up to constants in :math:`m`:
Martin Reinecke's avatar
Martin Reinecke committed
161

Philipp Arras's avatar
Philipp Arras committed
162
163
    .. math ::
        E(f) = - \\log G(f-m, D) = 0.5 (f-m)^\\dagger D^{-1} (f-m),
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
164

Philipp Arras's avatar
Philipp Arras committed
165
166
    an information energy for a Gaussian distribution with mean m and
    covariance D.
167

Philipp Arras's avatar
Philipp Arras committed
168
169
170
171
    Parameters
    ----------
    mean : Field
        Mean of the Gaussian. Default is 0.
172
173
    inverse_covariance : LinearOperator
        Inverse covariance of the Gaussian. Default is the identity operator.
Philipp Arras's avatar
Fixup    
Philipp Arras committed
174
    domain : Domain, DomainTuple, tuple of Domain or MultiDomain
Philipp Arras's avatar
Philipp Arras committed
175
176
177
178
179
180
        Operator domain. By default it is inferred from `mean` or
        `covariance` if specified

    Note
    ----
    At least one of the arguments has to be provided.
Martin Reinecke's avatar
Martin Reinecke committed
181
    """
Martin Reinecke's avatar
Martin Reinecke committed
182

183
    def __init__(self, mean=None, inverse_covariance=None, domain=None):
Martin Reinecke's avatar
Martin Reinecke committed
184
185
        if mean is not None and not isinstance(mean, (Field, MultiField)):
            raise TypeError
186
        if inverse_covariance is not None and not isinstance(inverse_covariance, LinearOperator):
Philipp Arras's avatar
Philipp Arras committed
187
188
            raise TypeError

Martin Reinecke's avatar
Martin Reinecke committed
189
190
191
        self._domain = None
        if mean is not None:
            self._checkEquivalence(mean.domain)
192
193
        if inverse_covariance is not None:
            self._checkEquivalence(inverse_covariance.domain)
Martin Reinecke's avatar
Martin Reinecke committed
194
195
196
197
198
        if domain is not None:
            self._checkEquivalence(domain)
        if self._domain is None:
            raise ValueError("no domain given")
        self._mean = mean
199
        if inverse_covariance is None:
200
            self._op = Squared2NormOperator(self._domain).scale(0.5)
Martin Reinecke's avatar
Martin Reinecke committed
201
        else:
202
203
            self._op = QuadraticFormOperator(inverse_covariance)
        self._icov = None if inverse_covariance is None else inverse_covariance
Martin Reinecke's avatar
Martin Reinecke committed
204
205

    def _checkEquivalence(self, newdom):
Martin Reinecke's avatar
fix    
Martin Reinecke committed
206
        newdom = makeDomain(newdom)
Martin Reinecke's avatar
Martin Reinecke committed
207
        if self._domain is None:
Philipp Arras's avatar
Philipp Arras committed
208
            self._domain = newdom
Martin Reinecke's avatar
Martin Reinecke committed
209
        else:
Philipp Arras's avatar
Philipp Arras committed
210
            if self._domain != newdom:
Martin Reinecke's avatar
Martin Reinecke committed
211
212
213
                raise ValueError("domain mismatch")

    def apply(self, x):
214
        self._check_input(x)
Philipp Arras's avatar
Philipp Arras committed
215
        residual = x if self._mean is None else x - self._mean
Philipp Arras's avatar
Changes    
Philipp Arras committed
216
        res = self._op(residual).real
217
        if not isinstance(x, Linearization) or not x.want_metric:
Martin Reinecke's avatar
Martin Reinecke committed
218
219
220
221
222
223
            return res
        metric = SandwichOperator.make(x.jac, self._icov)
        return res.add_metric(metric)


class PoissonianEnergy(EnergyOperator):
Philipp Arras's avatar
Docs    
Philipp Arras committed
224
225
    """Computes likelihood Hamiltonians of expected count field constrained by
    Poissonian count data.
226

Philipp Arras's avatar
Philipp Arras committed
227
    Represents up to an f-independent term :math:`log(d!)`:
228

Philipp Arras's avatar
Philipp Arras committed
229
230
    .. math ::
        E(f) = -\\log \\text{Poisson}(d|f) = \\sum f - d^\\dagger \\log(f),
231

Philipp Arras's avatar
Philipp Arras committed
232
    where f is a :class:`Field` in data space with the expectation values for
Martin Reinecke's avatar
Martin Reinecke committed
233
    the counts.
Philipp Arras's avatar
Philipp Arras committed
234
235
236
237
238
239

    Parameters
    ----------
    d : Field
        Data field with counts. Needs to have integer dtype and all field
        values need to be non-negative.
Martin Reinecke's avatar
Martin Reinecke committed
240
    """
Philipp Arras's avatar
Philipp Arras committed
241

242
    def __init__(self, d):
Philipp Arras's avatar
Philipp Arras committed
243
244
        if not isinstance(d, Field) or not np.issubdtype(d.dtype, np.integer):
            raise TypeError
Martin Reinecke's avatar
stage2    
Martin Reinecke committed
245
        if np.any(d.val < 0):
Philipp Arras's avatar
Philipp Arras committed
246
            raise ValueError
247
248
        self._d = d
        self._domain = DomainTuple.make(d.domain)
Martin Reinecke's avatar
Martin Reinecke committed
249
250

    def apply(self, x):
251
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
252
        res = x.sum()
Martin Reinecke's avatar
stage2    
Martin Reinecke committed
253
        tmp = res.val.val if isinstance(res, Linearization) else res
Martin Reinecke's avatar
Martin Reinecke committed
254
255
        # if we have no infinity here, we can continue with the calculation;
        # otherwise we know that the result must also be infinity
Martin Reinecke's avatar
Martin Reinecke committed
256
        if not np.isinf(tmp):
Martin Reinecke's avatar
Martin Reinecke committed
257
            res = res - x.log().vdot(self._d)
Martin Reinecke's avatar
Martin Reinecke committed
258
        if not isinstance(x, Linearization):
Martin Reinecke's avatar
Martin Reinecke committed
259
            return Field.scalar(res)
260
261
        if not x.want_metric:
            return res
Martin Reinecke's avatar
Martin Reinecke committed
262
263
264
        metric = SandwichOperator.make(x.jac, makeOp(1./x.val))
        return res.add_metric(metric)

265

266
class InverseGammaLikelihood(EnergyOperator):
Philipp Arras's avatar
Docs    
Philipp Arras committed
267
    """Computes the negative log-likelihood of the inverse gamma distribution.
268
269
270

    It negative log-pdf(x) is given by

Martin Reinecke's avatar
Martin Reinecke committed
271
272
273
274
275
276
277
    .. math ::

        \\sum_i (\\alpha_i+1)*\\ln(x_i) + \\beta_i/x_i

    This is the likelihood for the variance :math:`x=S_k` given data
    :math:`\\beta = 0.5 |s_k|^2` where the Field :math:`s` is known to have
    the covariance :math:`S_k`.
278
279
280
281
282
283
284

    Parameters
    ----------
    beta : Field
        beta parameter of the inverse gamma distribution
    alpha : Scalar, Field, optional
        alpha parameter of the inverse gamma distribution
285
    """
Philipp Arras's avatar
Philipp Arras committed
286

287
288
    def __init__(self, beta, alpha=-0.5):
        if not isinstance(beta, Field):
Philipp Arras's avatar
Philipp Arras committed
289
            raise TypeError
290
291
        self._beta = beta
        if np.isscalar(alpha):
Martin Reinecke's avatar
stage2    
Martin Reinecke committed
292
            alpha = Field(beta.domain, np.full(beta.shape, alpha))
293
294
295
296
        elif not isinstance(alpha, Field):
            raise TypeError
        self._alphap1 = alpha+1
        self._domain = DomainTuple.make(beta.domain)
297
298

    def apply(self, x):
299
        self._check_input(x)
300
        res = x.log().vdot(self._alphap1) + (1./x).vdot(self._beta)
301
302
        if not isinstance(x, Linearization):
            return Field.scalar(res)
303
304
        if not x.want_metric:
            return res
305
        metric = SandwichOperator.make(x.jac, makeOp(self._alphap1/(x.val**2)))
306
307
308
        return res.add_metric(metric)


309
class StudentTEnergy(EnergyOperator):
Lukas Platz's avatar
Lukas Platz committed
310
    """Computes likelihood energy corresponding to Student's t-distribution.
311
312

    .. math ::
Lukas Platz's avatar
Lukas Platz committed
313
314
        E_\\theta(f) = -\\log \\text{StudentT}_\\theta(f)
                     = \\frac{\\theta + 1}{2} \\log(1 + \\frac{f^2}{\\theta}),
315

Lukas Platz's avatar
Lukas Platz committed
316
    where f is a field defined on `domain`.
317
318
319

    Parameters
    ----------
Lukas Platz's avatar
Lukas Platz committed
320
321
    domain : `Domain` or `DomainTuple`
        Domain of the operator
322
323
324
325
326
327
328
329
330
331
    theta : Scalar
        Degree of freedom parameter for the student t distribution
    """

    def __init__(self, domain, theta):
        self._domain = DomainTuple.make(domain)
        self._theta = theta

    def apply(self, x):
        self._check_input(x)
332
        v = ((self._theta+1)/2)*(x**2/self._theta).log1p().sum()
333
334
335
336
        if not isinstance(x, Linearization):
            return Field.scalar(v)
        if not x.want_metric:
            return v
337
        met = ScalingOperator(self.domain, (self._theta+1) / (self._theta+3))
338
339
340
341
        met = SandwichOperator.make(x.jac, met)
        return v.add_metric(met)


Martin Reinecke's avatar
Martin Reinecke committed
342
class BernoulliEnergy(EnergyOperator):
Philipp Arras's avatar
Philipp Arras committed
343
    """Computes likelihood energy of expected event frequency constrained by
344
345
    event data.

Philipp Arras's avatar
Philipp Arras committed
346
347
348
349
350
351
352
    .. math ::
        E(f) = -\\log \\text{Bernoulli}(d|f)
             = -d^\\dagger \\log f  - (1-d)^\\dagger \\log(1-f),

    where f is a field defined on `d.domain` with the expected
    frequencies of events.

353
354
    Parameters
    ----------
Martin Reinecke's avatar
Martin Reinecke committed
355
    d : Field
Philipp Arras's avatar
Philipp Arras committed
356
        Data field with events (1) or non-events (0).
Martin Reinecke's avatar
Martin Reinecke committed
357
    """
Philipp Arras's avatar
Philipp Arras committed
358

359
    def __init__(self, d):
Philipp Arras's avatar
Philipp Arras committed
360
361
        if not isinstance(d, Field) or not np.issubdtype(d.dtype, np.integer):
            raise TypeError
Martin Reinecke's avatar
stage2    
Martin Reinecke committed
362
        if not np.all(np.logical_or(d.val == 0, d.val == 1)):
Philipp Arras's avatar
Philipp Arras committed
363
            raise ValueError
Martin Reinecke's avatar
Martin Reinecke committed
364
        self._d = d
365
        self._domain = DomainTuple.make(d.domain)
Martin Reinecke's avatar
Martin Reinecke committed
366
367

    def apply(self, x):
368
        self._check_input(x)
Philipp Arras's avatar
Philipp Arras committed
369
        v = -(x.log().vdot(self._d) + (1. - x).log().vdot(1. - self._d))
Martin Reinecke's avatar
Martin Reinecke committed
370
        if not isinstance(x, Linearization):
Martin Reinecke's avatar
Martin Reinecke committed
371
            return Field.scalar(v)
372
373
        if not x.want_metric:
            return v
Philipp Arras's avatar
Philipp Arras committed
374
        met = makeOp(1./(x.val*(1. - x.val)))
Martin Reinecke's avatar
Martin Reinecke committed
375
376
377
378
        met = SandwichOperator.make(x.jac, met)
        return v.add_metric(met)


379
class StandardHamiltonian(EnergyOperator):
Philipp Arras's avatar
Philipp Arras committed
380
381
    """Computes an information Hamiltonian in its standard form, i.e. with the
    prior being a Gaussian with unit covariance.
382

Philipp Arras's avatar
Philipp Arras committed
383
    Let the likelihood energy be :math:`E_{lh}`. Then this operator computes:
384

Philipp Arras's avatar
Philipp Arras committed
385
386
    .. math ::
         H(f) = 0.5 f^\\dagger f + E_{lh}(f):
387

Martin Reinecke's avatar
Martin Reinecke committed
388
    Other field priors can be represented via transformations of a white
389
390
    Gaussian field into a field with the desired prior probability structure.

Martin Reinecke's avatar
Martin Reinecke committed
391
    By implementing prior information this way, the field prior is represented
392
393
394
    by a generative model, from which NIFTy can draw samples and infer a field
    using the Maximum a Posteriori (MAP) or the Variational Bayes (VB) method.

Philipp Arras's avatar
Philipp Arras committed
395
396
397
398
399
400
401
402
    The metric of this operator can be used as covariance for drawing Gaussian
    samples.

    Parameters
    ----------
    lh : EnergyOperator
        The likelihood energy.
    ic_samp : IterationController
403
        Tells an internal :class:`SamplingEnabler` which convergence criterion
Philipp Arras's avatar
Philipp Arras committed
404
405
406
407
408
409
        to use to draw Gaussian samples.

    See also
    --------
    `Encoding prior knowledge in the structure of the likelihood`,
    Jakob Knollmüller, Torsten A. Ensslin,
Martin Reinecke's avatar
Martin Reinecke committed
410
    `<https://arxiv.org/abs/1812.04403>`_
Martin Reinecke's avatar
Martin Reinecke committed
411
    """
Philipp Arras's avatar
Philipp Arras committed
412

413
    def __init__(self, lh, ic_samp=None, _c_inp=None):
Martin Reinecke's avatar
Martin Reinecke committed
414
415
        self._lh = lh
        self._prior = GaussianEnergy(domain=lh.domain)
416
417
        if _c_inp is not None:
            _, self._prior = self._prior.simplify_for_constant_input(_c_inp)
Martin Reinecke's avatar
Martin Reinecke committed
418
        self._ic_samp = ic_samp
Martin Reinecke's avatar
Martin Reinecke committed
419
        self._domain = lh.domain
Martin Reinecke's avatar
Martin Reinecke committed
420
421

    def apply(self, x):
422
        self._check_input(x)
Philipp Arras's avatar
Philipp Arras committed
423
424
425
        if (self._ic_samp is None or not isinstance(x, Linearization)
                or not x.want_metric):
            return self._lh(x) + self._prior(x)
Martin Reinecke's avatar
Martin Reinecke committed
426
        else:
427
            lhx, prx = self._lh(x), self._prior(x)
428
429
            mtr = SamplingEnabler(lhx.metric, prx.metric,
                                  self._ic_samp)
Philipp Arras's avatar
Philipp Arras committed
430
            return (lhx + prx).add_metric(mtr)
Martin Reinecke's avatar
Martin Reinecke committed
431

Philipp Arras's avatar
Philipp Arras committed
432
433
    def __repr__(self):
        subs = 'Likelihood:\n{}'.format(utilities.indent(self._lh.__repr__()))
434
        subs += '\nPrior:\n{}'.format(self._prior)
Martin Reinecke's avatar
Martin Reinecke committed
435
        return 'StandardHamiltonian:\n' + utilities.indent(subs)
Philipp Arras's avatar
Philipp Arras committed
436

437
438
439
440
    def _simplify_for_constant_input_nontrivial(self, c_inp):
        out, lh1 = self._lh.simplify_for_constant_input(c_inp)
        return out, StandardHamiltonian(lh1, self._ic_samp, _c_inp=c_inp)

Martin Reinecke's avatar
Martin Reinecke committed
441

Martin Reinecke's avatar
Martin Reinecke committed
442
class AveragedEnergy(EnergyOperator):
Philipp Arras's avatar
Docs    
Philipp Arras committed
443
    """Averages an energy over samples.
Martin Reinecke's avatar
Martin Reinecke committed
444

445
446
447
    Parameters
    ----------
    h: Hamiltonian
Philipp Arras's avatar
Philipp Arras committed
448
       The energy to be averaged.
Martin Reinecke's avatar
Martin Reinecke committed
449
    res_samples : iterable of Fields
Torsten Ensslin's avatar
Torsten Ensslin committed
450
451
       Set of residual sample points to be added to mean field for
       approximate estimation of the KL.
452

Philipp Arras's avatar
Docs    
Philipp Arras committed
453
454
455
456
457
    Notes
    -----
    - Having symmetrized residual samples, with both :math:`v_i` and
      :math:`-v_i` being present, ensures that the distribution mean is
      exactly represented.
Torsten Ensslin's avatar
Fix te    
Torsten Ensslin committed
458

Philipp Arras's avatar
Docs    
Philipp Arras committed
459
460
461
    - :class:`AveragedEnergy(h)` approximates
      :math:`\\left< H(f) \\right>_{G(f-m,D)}` if the residuals :math:`f-m`
      are drawn from a Gaussian distribution with covariance :math:`D`.
Martin Reinecke's avatar
Martin Reinecke committed
462
    """
Martin Reinecke's avatar
Martin Reinecke committed
463
464
465

    def __init__(self, h, res_samples):
        self._h = h
Martin Reinecke's avatar
Martin Reinecke committed
466
        self._domain = h.domain
Martin Reinecke's avatar
Martin Reinecke committed
467
468
469
        self._res_samples = tuple(res_samples)

    def apply(self, x):
470
        self._check_input(x)
Philipp Arras's avatar
Philipp Arras committed
471
472
        mymap = map(lambda v: self._h(x + v), self._res_samples)
        return utilities.my_sum(mymap)*(1./len(self._res_samples))